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FOREWORD

The history of mathematics, the development and structure
of other numeration systems, and computation in other bases are
being introduced with increasing success in the elementary grades.
Such concepts help children to gain insight into mathematical
principles; they give meaning to heretofore rote responses, encourage
the gifted to greater academic achievement, and stimulate children's
interest and enjoyment of mathematics. Elementary students can
thus master not only the "facts" and computational skills but gain
an increasing understanding of them as well.

Since today's crowded curriculum must be compressed into the
instructional time which is available, it is necessary to find a
way to teach more efficiently. New learning aids are being
developed to assist teachers of elementary arithmetic in making
classroom presentations that are meaningful and mathematically
sound; yet teachers must have sufficient mathematical background
to use such aids in an effective manner. The purpose of this manual
is to point out some of the content which is fundamental to the
use of learning aids and to suggest specific examples for the use of
visual and manipulative devices in elementary classroom presentations.

Teachers who have little background in mathematics need to
be encouraged to strengthen their competency in content and to
gain confidence in the methodology which accompanies curriculum
change. The materials of Elementary Arithmetic and Learning Aids
are designed to help teachers in their inservice programs to acquire
the knowledge and skills necessary for the effective teaching of
modern mathematics.

Both the instructional equipment and materials and the
State supervisory services available under title III of the National
Defense Education Act are helping to strengthen the school programs
of mathematics. This publication is a service of the Instructional
Resources Branch, U.S. Office of Education, to the State supervisors
of mathematics and to the classroom teachers who are guiding our
future citizens toward mathematical literacy.

The teaching techniques and student activities included in
this publication were first developed by the author for the Lansing,

Mich., elementary inservice programs in the use of learning aids
purchased under title III, National Defense Education Act. Acknowledge-
ment is given to Forrest G. Averill, Lansing Superintendent of
Schools, for permission to use the original manuscript as a basis
for this manual. Appreciation is also expressed to Harry L. Phillips,
Specialist in Mathematics, Division of State Grants, U.S. Office of
Education, who gave valuable assistance in the preparation of the
manual; and to Seaton E. Smith, Jr., Mathematics Specialist, State
Department of Education, W.Va., for his many helpful suggestions.
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PART I. ARITHMETIC AS A SYMBOLIC LANGUAGE

USING SYMBOLS TO REPRESENT QUANTITY

Numeration is an organized system of expressing quantity With
symbols. The symbols are called numerals. The idea of quantity is
the number. Obviously there are times when we wish to talk and write
about numbers. Whenever it seems appropriate we shall use the term
number. Many types of numerals have been used throughout the history
of mathematics. It has generally been true that man has always tried
to make whatever numeration system he used simpler and more convenient.
In this sense, we might say that arithmetic just "grew." It has
grown for some five or, six thousand years. Many older numeration
systems might not be recognized as such today.

Counting is basic to arithmetic. It might be possible, if time
permitted, to count to the answer in an arithmetic problem. Since
mathematics should be simple and convenient in order to be of the most
use, we count in groups rather than by naming every separate quantity.
We count in groups of tens and call this a base ten numeration system.
There exist records of some very simple numeration systems like this:

(/) one
(//) two
(///) some
(any amount of more
than /// with no
symbol to represent
it) many

It makes little difference what the symbols are or how they are
named so long as the quantity they represent is agreed upon. We can
see that in this system four could be either maw, or some plus one,
or one plus some, or perhaps just onesome as a word. This would be
like our twenty-one. When we say "twenty-one" we think
of an amount, and seldom stop to think that it is equal to 2 tens
plus 1 one.

In the history of numeration, quantities have been represented
in many ways. The Romans and Greeks used letters and the Egyptians
used pictures. Often the symbol has had meaning or some relationship
to the quantity which it represented. For instance, a nose could
represent one.

:4:1'114



2

A numeration system might develop in this manner:

Nose represents one. (Every-

one has just one of these.)

Eyes come in pairs. (Eyes have

often represented two. some-

times wings have been used.)

Drawing two eyes every time is
a bother, so one eye might

come to represent two all by

itself.

Nose-eye could represent three.

It is rather a nuisance to have

to make these two separately.
The symbol for three might
come to be no more than some-

thing like this.

A counting system has been devised by naming fingers and toes

and then combining these names. In this way counting is done in

groups of five instead of ten as we do. This can be done until twenty

is reached and then groups of twenty can be used.
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A finger and toes counting system might look like this:

amount s mbol number name

1
... .

1 fine we

2
, 2 fin:ers

3 4 3 fin:ers

4 40
.-, hand less 1 fin:er

5 VI hand

6
\

hand and 1 finer

hand and 2 fingers

hand and 3 fin:ers

7

8 t
9 2 hands less 1 finer

-...-

10 ,'' 2 bands

11 4 fiC_\ 2 hands and 1 toe

12 2 hands and 2 toes

13

..

2 hands and 3 toes

14 4 2 hands and 4 toes

15 2 hands and 1 foot ,saim

16 2 hands and 1 foot and 1 toe

17 2 bands and 1 foot and 2 toes

18 .
2 hands and 1 foot and 3 toes

19 7c 2 hands and 1 foot and 4 toes

20 4.1 fik 2 hands and 2 feet
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ACTIVITIES WITHOUT LEARNING AIDS

Such a system of naming numbers is useful in helping zhildren
to understand the representation of quantity by the use of a symbol.
A lesson-game for primary children could consist of the following:

Ask rhilAran: "How Wny things would these words represent?"

hand + hand + 1 toe?

hand + hand + 4 toes?

hand + hand + foot?

hand + hand + foot + 1 toe?

hand + hand + foot + foot?

Let children do exercises by thinking of a hand as 5, each foot
as 5, and each digit as 1. It will help to have youngsters "make a
fist" and sit with hands on their desks or in their laps to encourage
them to think in groups of five. Give students ample time to think
during each exercise. In order to avoid misrepresenting more
complicated operations of addition and subtraction, ask if each of
these pairs of expressions would represent the same quantity. Give
youngsters an opportunity to explain how they think of the grouping
in each exercise, as indicated by the parentheses.

(hand + hand) - finger = ? hand - (3 fingers - 2 fingers) = ?

(5 + 5 ) - 1 = ? 5 - (3 - 2 ) = ?

10 - 1 =9 5 - 1 =4

hand + (hand - finger) = ? (hand - 3 fingers) - 2 fingers = ?

5 +(5 -1 ) = ? (5 -3 ) -2 = ?

5 + 4 =9 2 - 2 =0

Great care should be taken to avoid mathematical fallacies when
playing this or other games in arithmetic. On the other hand, it is
possible to develop sound principles when games are used carefully.
Small nhildren may use this very simple numeration system to aid
them in computing mental arithmetic problems. Develop additional
exercises suitable to the children's abilities. Always encourage
youngsters to contribute their own exercises and to discuss these
with the class.
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In order to demonstrate the development and use of abstract
symbols, let the children imagine that they need to "keep track of
something" but that they know of no system of numeration to use.
Ask them to make up symbols to represent amounts and then to do a
problem or two in their own system. Suggest simple problems such
as 4 +3 =7 or 8 - 5 =3. Have students do each problem in both
our own system and in the invented one. Let students develop their
own algorisms -- the way they put it on paper -- in order to perform
the computation. Discuss which may be the best way. From this
demonstration students will discover that a numeration system should be
simple, convenient, and consistent. They should realize that the
assignment of a numeral to a quantity is arbitrary. Any symbol may
be used but its use must be consistent once it is established.
Students can be convinced of this by letting them exchange numeration
systems with their neighbors, and attempt to learn to compute with
the use of unfamiliar numerals. This activity may be done at any
grade level.

LEARNING AIDS FOR COUNTING

Make a panorama to show how a shepherd might keep track of
sheep by using / pebble to represent each sheep. Use animal crackers
mounted on small squares for the sheep. Flannelboard cutouts could
also be used. Show 1-1 and 1-5 relationships.

612-

1 5Z. la.

From examples such as those above, show that there might be a
need to change the quantity ascribed to each pebble if there were a
change in the number of animals. For example, it would be difficult
to represent 7 sheep with pebbles having a value of 5 each. Let
students experiment and devise methods as the number to be represented

is changed.
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Have each student bring a pebble to school. Place these in a
box near the classroom door. Take attendance by matching one student
with one pebble. Point out that such mapping of students to pebbles
does not require that we have a name for the amount. The pile of
pebbles represents the number of students in the room. If there are
any remaining, someone is absent; if there are not enough, someone is
there who should not be (or someone took more than one pebble). The
same activity can be carried out with a counting frame, sticks, or
with an abacus. When the tenth student comes into the room, he slides
down the 10 one beads and exchanges them for 1 ten bead; the next child
shows eleven on tiza abacus (a 1 ten bead on the tees' column and 1 one
bead on the ones' column).

Compare activities of this nature with our need to have count-
ing names so that one can state the number of students present. Point
out the advantages or disadvantages of both methods. For example, the
number name "twelve" conveys more meaning to us than a pile containing
this amount of pebbles or sticks but having no number name to describe
it.

Counting sticks and other counting devices may be used to
develop the understanding of a need for naming quantities.
Demonstrate that in a 1-1 relationship, 1 pebble represents 1. Show
that this would be inconvenient if a large number were to be accounted
for. Show the advantage of a 1-5 relationship by counting 5 sheep
for each pebble as above. Do this for a 1-10 relationship. Create
a more difficult situation by asking students how 62 sheep could be
represented. Let youngsters experiment in determining the amount
each stick or pebble would need to represent. Suggest that if a
1-20 relationship is used some sticks would have to represent 20 and
some other sticks would have to represent one. Use sticks of differ-
ent colors or lengths. Select quantities that are suited to students'
abilities.



Set up displays of counting sticks and let the children tell
how many things are represented by the display.

Each long stick represents 20 sheep, each short stick

one. How many sheep are represented? (20 + 20 + 1 +

1 = 42)

After children are convinced that our numeration system is an
arbitrary assignment of a given quantity to a mutually agreed upon
symbol, relate the above activities to our base ten system. Make a
display with counting sticks that represents a base ten numeral such

as 27.

Each long stick represents ten, each short stick

represents one. How much is represented? (10 + 13 +

1 + 1 + 1 + 1 + 1 + 1 + 1 = 27)

How many more short sticks would need to be added
before we could use three long sticks o represent

an amount. What would be the amount? (Three more

short sticks would need to be added,)

Shaw that 10 + 10 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

1 + 1 = 30 or three groups of ten.

Similar activities can also be carried out on a flannelboard

using cutouts. Let students demonstrate the representation of various
quantities, using sticks or counters to which 4 value has been assigned.

Numerical understandings as presented in primary books may be developed

in this manner. One student may represent the quantity with counting
sticks, discs, or any suitable device; another student may write the

amount on the chalkboard using the correct numeral, or may select

the numeral from a display.

11111 1011

Similar activities can be done with a counting frame.
Ask a child to represent 6 on the counting frame.
After this has been done ask such questions as:

"How do we know this is 6?" (We can count the

beads.) "What can we find out about 6?" (It is

made up of 3 ones plus 3 ones, or 3 + 3; it is 5 + 1;

it is 6 ones, etc.)

Encourage students to manipulate the beads themselves

in order to make other discoveries. Let them symbo-

lize each statement on the chalkboard.

7
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Let a child represent 7 on the frame. Ask:
"What can we do to 7 in order teget to 6?"
Encourage students to symbolize 7 - 1 = 6
after it has been discussed. Do not penalize
incorrect answers. They may be used for a
revealing and worthwhile class discussion.
Let the class discover the reason for errors.
Use the counting frame to let students demon-
strate the basis for their thinking in
correcting their own errors.

Learning aids that may be collected, counted, piled up, scat-
tered, spread out, grouped, arranged in rows, and compared help to
give primary children an understanding of concepts of quantity at the
same time they are learning the numerals which represent quantity.
Counting aids should be readily available to students for formal class-
room activity and also for individual experimentation and investiga-
tion. In addition to the many things which children naturally collect,
particularly useful devices include counting frames, blocks, discs,
beads, toy animals, vehicles, and figures of all kinds. Some of these
are available in counting kits which are useful in story-telling
problems. For example, a toy farm can be used to illustrate the
relationship between the number of cows and the number of stalls which
are available. The symbols for the order relationships of more than
(symbolized >) and less than (<) should be developed at the same
time youngsters begin to count. A thorough understanding of quantity
and the representation of quantity by the use of numerals can do much
to build a firm foundation for the manipulation of symbols in algorisms.
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PART II. OUR OWN NUMERATION SYSTEM

ORIGIN

The exact beginning of our numeration system is known only
vaguely. Some historians believe that it has been in use since the
thirtieth century B.C. Apparently it was employed for some time by
the nomadic tribes of Arabia and India before it was recognized as
being superior to the old Greek and Roman systems. The symbols are
of Hindu origin and may have been picked up in India by Arabian
traders and carried to Europe only as a curiosity. Hence our system
of notation is called Hindu-Arabic. At first it appeared without the
zero, and in this respect had little advantage over the older systems.

The zero may have come into use about the ninth century.
The Hindus had hit upon the ingenious idea of place value, or grouping
of numerals. By using a base of ten, tbey could express any amount
with only ten symbols, using zero as the symbol to represent an empty
place. The choice of all the symbols is arbitrary, as pointed out
in Part I.

The Hindu-Arabic system was known in Europe as early as the
13th century but was not used extensively until developments in
science and trade made its computational.advantages preferred over
the older existing systems, possibly about the 16th century. It is

important to remember that over the past 5,000 years or so our
numeration system has altered as it has been influenced by the
changing needs of science and society and by the contributions of
the pioneers impure mathematics.

PLACE VALUE

Because we count in groups of numbers it is possible to represent
quantity and to compute with only a few symbols. In our numeration
system we count in groups of tens. We call this a base of ten.
It is sometimes called a model group of ten. We have ten symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and use positional notation in writing
our numerals. We usually refer to this as place value. Zero enables

us to indicate an empty position. The numeral 3 shows 3 ones. If

we place the 3 in another position and write 30, we use the zero to
occupy the ones' place and use the 3 in tens' place. It now represents

3 tens. Zero indicates an absence of ones. The numeral 30 represents

3 tens plus 0 ones. We can show the tens' place empty with another
zero and place the 3 in the hundreds' place, giving 300. In each

case, we have used the same symbol (3) to Stand for three different

amounts. tie could go on doing this without end.
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The numeral 10 represents ten only under certain conditions.
We use a digit in a place to which we have assigned the value of ten
and the zero indicates that there is nothing in the ones' place.
We read this numeral, 10, as "ten." It represents one group of ten
which is the base of the base ten numeration system. The symbol 1 in
the numeral 10 represents 1 times the base of ten; and 2 in the numeral
24 represents 2 times the base of ten. If the base of the system
were a different amount, the 1 in the numeral 10 would represent
that amount. In considering the numeral 24, the 2 would represent
twice the base or the model group of the system. Therefore, the
numeral 10 represents which we call ten only when the base of the
system is what we know as ten. Decem meiMrliTEre7EiTri7Manial"
system of notation.

If we think about counting, it helps us to visualize the base
of be system. It is perhaps unfortunate that we learn to count before
we understand the meaning, because we are then so familiar with the
process we may fail to see the importance of it. An understanding
of the meaning of the base is necessary to the development of skill-
ful computation.

We use counting numbers 1, 2, 3, 4, 5, 6 ... to represent quan-
tities used in counting. These are called the natural numbers. Zero
is not considered a natural number. The first number name in the
ordered set of natural numbers used in counting is one. Zero is
used to name the members of an empty set. Counting can be thought of
as adding by ones. We think of cardinal numbers as the numbers
indicating how many: one, two, three, and so on. The cardinal
number 3 can be put into 1-1 relationship with /// things. When we
count, the last number named states the name of the number of members
of the set which we are counting. We count: "one, two, three..."
"Three" is the last number we name. The term "third" names the member.
of a group that is between the second and fourth members. Ordinal
terms such as first, second, third, fourth, etc., express the order or
arrangement of a series of the members of a set of things.

In a numeral a digit has two values -- a cardinal value and a
place value. The numeral 3 not only has a value that makes it equal to
/// things; it also can be used to represent 3 tens, 3 hundreds, and
so forth, according to its position in a numeral. We can think of a
numeral as though the digits multiplied the value of the particular
place in which each stands.

For instance, 333 can be expressed as (3 x 100) + (3x10) +
(3 x 1). We call this an expanded form. We can express any numeral
in this form: 25 = (2 x 10) +(5 x 1). It should be thoroughly
understood that zero in the numeral 20 represents 0 x 1, indicating
the absence of any members in the set of ones. In other words, the
ones' place is empty. When a numeration system is thought of in this
way it is possible to understand the arithmetic operations of addition,
multiplication, subtraction, and division in any base to supply a
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foundation for the regrouping process which we often call "borrow-

ing" and "carrying."

In order to demonstrate the value of each position in any

numeral, students should develop a chart like the following by
writing out selected sequences of numerals in expanded notation.

(The indicates omissions in the illustrated sequence and the

parentheses, multiplication.)

1 =
2 =
3 =
4 =
.
10 =
11 =.
20 =

1(1)

2(1)

3(1)

4(1)

1(10)

1(10)

2(10)

+ 0(1)

+ 1(1)

+ 0(1)

26 = 2(10) + 6(1)

45 = 4(10) + 5(1)

46 = 4(10) + 6(1)

99 = 9(10) + 9(1)

100 = 1(100) + 0(10) + 0(1)

150 = 1(100) + 5(10) + 0(1)

268 = 2(100) + 6(10) + 8(1)

1000 = 1(1000) + 0(100) + 0(10) + 0(1)

1004 = 1(1000) + 0(100) + 0(10) + 4(1)

4579 = 4(1000) + 5(100) + 7(10) + 9(1)

THE ABACUS (plural, abaci (s1) , - cuses)

The abacus has been used as a computational device for thou-

sands of years. The columns of the various types of abaci serve to

emphasize the close relationship between positional notation and

the algorisms used in computation. They also make it possible to

represent physically the regrouping necessary in computing and to

demonstrate the use of a base in our numeration system. The abacus is

a valuable tool .for the deVelopment of an understanding of counting,

place value, and regrouping. Students should not spend

789-974 0-65-2
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time needed to perfect techniques of computing with thedbacus, since
it will have little practical use for them. It can be very useful in
the development of mathematical understandings.

There are several types of abaci available. Some, combined
with counting frames, are usually of a limited numerical capacity
but may be used to build simple understandings. Place value is of
course limited to the number of columns oo the device. The abacus
below represents the numeral 329.

3 2 9
3 (100) * 2 ow # q (/1

Abaci of this type are usually equipped with 9, 10,or 20 beads
on a column. The 20-bead abacus permits greater freedom in the
manipulations involved in demonstrations of regrouping. The counting
frame on the left may be used as described previously.

An abacus can be used to demonstrate place value as it relates
to the model group of ten in our numeration system and to emphasize
the quantity represented by each symbol in a numeral.

Push up 10 ones on the ones' column,
counting and writing the numerals as
you do: "1, 2, 3, 4, 5, 6, 7, 8, 9
040 " We have no single digit symbol
for ten such as the Egyptian ns
Roman X, and Greek .



After writing 9 we have no more sym-
bols to express additional quantities--
we use place value and write 10,
indicating 1 x 10 plus 0 x 1.
Push down the 10 ones beads and ?ush
up 1 tergbead on the tens' column,
demonstrating an exchange of 10 ones
for 1 ten. Point out that the ones'
column is empty and that this is
indicated by the 0 in the numeral
10.

Do this again: push up 10 ones, count
and write the numerals as you do: 11

12, 13, 14, 15 20 There is now
another group of 10 ones, so push
down the ones and exchange them for
1 ters bead on the tens' column. There
are now two groups of ten represented
by the numeral 20. Point out that
this means (2 x 10) + x 1).

Continue doing this until 10 of the
tens beads have been pushed up.
Push the 10 tens beads down and ex-
change than for 1 hundreds bead.
Point out that the numeral 100
represents (1 x 100) + (0 x 10) +
(0 x 1). Show that the tens' column
and the ones' column are both empty.
This is indicated by the zeros in
the numeral 100.

This procedure could be continued (or
shortened) to demonstrate that after
all of the hundreds beads have been
used we need a single digit to rep-
resent 10 tens, or we can use place
value. The Greek, Egyptian, and
Roman symbols did this, ours do not.
Exchange 10 hundreds for 1 thousands
bead. Write the numeral 1000, indi-
cating (1 1000) (0 x 100) +
(0 x 10) + (0 x 1). Point out that
the hundreds', tens', and ones'
columns are empty. This is indicated
by the zeros in the numeral 1,000.

13
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Use the 20-bead abacus to demonstrate similar numbers to primaiy
children. 10.

/I ONES EXCHANGE /0 ONES
FOR / TEN
i(io) t /o=a

Encourage students to participate and to experiment. Let one
child represent eighteen ones on the ones' column. Ask, "Who can
regroup eighteen ones as tens and ones and write the numeral on the
chalkboard?" Cofitinue with other examples.

Adjust the size of the numbers to the abilities of the youngsters;
let them make assumptions, and perform the manipulations. Primary
children should be able to understand that eleven is equivalent
to 11 ones, and also that there are 1 ten plus 1 one in 11, and
similar examples.

THE SOROBAN

The Japanese abacus called the soroban uses columns which are
divided by a cross bar. Each bead above the bar represents 5, each
bead below the bar, 1. The beads are moved toward the cross bar in
order to be "counted."
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The diagrams below illustrate the position of the beads for

counting from 1 to 12 on the soroban.

7 9

MOO

It is easy to see that very large numerals may be represented

on the soroban. The beads against the bar in this illustration

represent 14,560,890.

Tummanisan
7 11 5 6 9

The numeral 74,560,890 may be expanded as (7 x 10,000,000) +
(4 x 1,000,000) + (5 x 100,000) + (6 x 10,000) + x 1,000) 4-

(8 x 100) + (9 x 10) + (0 x 1). The place value is indicated by the

columns on the soroban.

PLACE VALUE POCKETS

Use place value pockets in primary grades to demonstrate similar
place value concepts in positional notation. Ask such questions as:

'Who can regroup sixteen ones into 1 ten and 6 ones?"

(1.uAIG REDS fENs ONES

1.6SMIES

HUNDREDS TEIV6 ONE S

I TEN 6 ONES

eggP

Give the students carus representing sixteen ones or place six-

teen ones in the ones' pocket. Have a student remove ten ones and

exchange them for 1 ten. Place die 1 ten in tens' pocket. Ask that

the numeral be written on the chalkboard.

eirerattg*Vet



Discuss what the numeral represents.

16 = 16 ones
= 1 ten + 6 ones or 10 +6
= (1 x 10) + (6 x 1)

Remove the 1 ten, and exchange it for 10 ones. Place the 10
ones back in the ones' pocket. Ask, "How many ones are now in the
ones' pocket?" (16) "Do we still have the same amount (or' quantity)
as before we exchanged 1 ten for 10 ones?" (Yes)

PLACE VALUE CHARTS

A chart can also be used to demonstrate place value and to help
give meaning to names which have to be memorized for positional

notation.

v.)
(s)

(1) (I) 0
c4 0 vt

tu

2 0 eC7/

Make small cards with the digits 0 to 9 on them. Place these

as suggested in the illustration. Ask children to do such things as:

1. Place the 2,4, and 0 cards so that tens' place is empty
and there are 2 hundreds and 4 ones represented. What is

the numeral? (204)

2. Represent the numeral that contains 326 ones. What is the

numeral? (326) Brow many tens does it contain? (32 tens

or 32 and .6 tens) Can we say that it contains 32 tens

and 6 ones? (Yes) Does it contain 3 hundreds 2 tens, and

6 ones? (Yes) Does(32 x 10) + (6 x 1) = (3 x 100) +

(2 x 10) + (6 x 1) ? (Yes)
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3. Let students compute and discuss the above questions and
similar ones in order to reinforce their understanding.

Use the place value chart to show that numbers may be thought
of in ways such as:

4569 = 4569 ones
45 hundreds + 69 ones
456 tens + 9 ones or 456.9 tens
4 thousand + 5 hundred + 6 tens + 9 ones

= (4 x 1,000) + (5 x 100) + (6 x 10) + (9 x 1)
4.569 thousands

Represent these and other numbers on the place value charts. Use

quantities suited to children's abilities. Ask questions that will
lead students to come to their own conclusions. When they are in
doubt, encourage experimentation and computation to help them make
discoveries which will enrich their background and understanding.

0.I
M

o 0r4 r4
M D4

0 0 0r4 1$ tr4

M I M
t(1* 0

e0...1 0 1r4
.0

M 41 M
m s00 ,000 r4 0 r1

erl 14f-IM1014
1-1 0plc) 0c)
13 1-1 .lira

0
r4

140
'103 0

r4a
fa 04000.0 r4
U1M0mou1-1

0
r4

ul Nis
040
CS r40
Oo NTSH
.0oUri

02
moC1
(I) r4
w
0*o.0 14

r4
0M010mo
43 r.1

0
00

Charts can also be used to show that each place has a value ten
times the value of the place to the right of it. For example, 10 is

equal to 10 x 1, 100 is equal to 10 x 10 and 1,000 is equal to 10 x

10 x 10.

Have students compute the value of each place or position so

that they understand that the value is determined by the number of

times ten is used as a factor.
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Illustrate with exercises, as:

136 = 1(10 x 10) + 3(10) + 6(1)
4339 = 4(10 x 10 x 10) + 3(10 x 10) 4- 8(10) + 9(1)

When students understand the value of each position, have them
6..nupa u.vmpuuauwaala owm.i& c.

429 = 4(10 x ?) + 2( ?) + 9(?)
3263 = 3(10 x ? x ?) + 2(? x 2) + 6(?) + 3(2)

Refer to place value charts to find the missing quantities.
Formulate exercises of increasing difficulty.

0o 0Kt 0
Ii a 00 00

,V 8 07
0 0 00 4 0 ..4 14 r04 r4

O Ts

Pt' 8 `g 'S '0:1

414
O

44
o

a a 14
I o o o ,to o la 0 fa 0
O rI r4 0 r4 a 1.4 4) "4
O 1%. .0 %. 0 %. CD %. 0 .%.
41 1.4 4.) 1.4 ,O r4 41 14 0 14

Each place also has a value 1/10 the value of the place to the
left. For example, 10 is equal to 1/10 of 100, 100 is equal to 1/10
of 1,000, and 1,000 is equal to 1/10 of 10,000. Demonstrate thid
with computation or manipulations as suggested with place value
pockets. Use whatever method is suited to the age and ability of
children. A chart of this type can be further extended to include
the use of decimal fractions. One-tenth is equal to 1/10 of 1,
1/100 is equal to 1/10 of 1/10, 1/1000 is equal to 1/10 of 1/100, etc.
Decimal notation is shown below. Students should compute the value
of each position to understand the manner in which the value of each
digit in a numeral is determined in decimal notation. The numeral
below represents 6(10,000) + 3(1,000) + 4(100) + 5(10) + 7(1) +
2(1/10) + 0(1/100) + 3(1/1000). Compute: 2/10 + 0/100 3/1000 to
see that it may be expressed as .203 or two hundred three thousandths.
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Students should do this.

.....

I 0
I 0 0
! 46 0 0

CD 00 CD
0

.0 4/' 00 CI
C5 C5 «4 M rm.0 0 0 0 0 , CO *0

! pal CA r on: r - r4 4 r 4) r
.6_11 VIIIM

6 44 -4 44 .3 44 44 44

:

40 we WO
O $4

0 0 244 14ci 111
14 MSO 00 fvc) coo ne v0.so 0 ZO

g :::. 2 g I ..: .... g 44. 1 z I tat pi za. 2 :it , ,

4/ rob 41 "al 'CI "II 41./ ril 0 sul 4) roll . X 121 el roll

3 Li 41` 7 Na.

EXPONENT FORM

The value of each position in a numeral may be indicated with

a simplified notation by using small numerals written above and to

the right of the base, showing the number of times the base is

used as a factor. We call these small numerals exponents. First

consider our base ten system. In the example 10 x 10 = 100, 10

has bcpn used as a factor,, twice. The quantity 100 can be represented

by 10'. The numeral 104 refers to the power. We read 102 as "ten

to the second power," or as "ten squared." The expression 103

(meaning 10 x 10 x 10) is read "ten cubed" or "ten to the third

power." Expressions such as 105(meaning 10 x 10 x 10 x 10 x 10) are

read simply as "ten to the fifth" and so forth. It is very easy

to see that the expression 108 is easier to read and write than

100,000,000 or the written words "one hundred million."

It is now possible to express the value of each position in

a numeral by using exponential notation. The chart below shows hole

this may be done. Notice that the exponent names the number of zeros

in each place or position.

0 in
r.4 '0

1454 54 1 54 54
co co

to 0 0 0 0 0 0 '0 0 0
= r-I r...1 rf r.-1 0 r-I Or4 p4
0 4 0
.4 M 51 MN u04 g )4

to 54
14 to 1 qi to

1-1 0 0 0 0 0 '0 0 0 0 0 CO
s 1 2.14 «4 1-4 0 1-4 r-I 0 r4 rI 4 rI rq

E or! k
11 54 14 54 54 r0 54 51 1 :4 g 54 4 54 co 54 0

O f-i 0 0 0 0 0
O 00 44 00 000 W 0 0 X0 00 WO 0
a f-t .-1 5 v-1 s-1 4 rI 1 .1.1 r-I - IJ 1 ,0 v-4 4,1 1.4 0

107 106 105 104 103 102 101 100
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We can see why ten to the zero power (10°) may be used to express
one if we do a problem using the powers of ten. We will start with
an example to which we know the answer.

10

x 10
100 written in exponent form

As the product of 10 x 10,is 100, and' 00 is expressed as 102 exponen-
tially, the product of 10' x 101 would be expressed as 102 . In
other words, 101 x 101 = 101 +1 or D02. To multiply exponential
expressions we add the exponents.

Now a simple division example will show why we may express ones
as 10°. Again we will use an example to which we know the answer,
and try to discover how the exponential expressions may be used.

10
10/ 100

10
1

written in exponent form 101/-157---

This may also be expressed as:

10 .
10

written in exponent form 101 = 10°
"fil

From the above examples it can be seen that Tee subtract exp9nents
to divide exponential expressions. Therefore, 10 4. 101 = 10 1'1 or
100. This would be true of any number which was used as the base.
For example 3 4. 3 = 1, or, in exponent form, 31 4. 31 , 31-1 or 3°.
Using N ktirepresent any number (N not 0), we can say that
N° = 1, 10° = 1, 3o = 1, 450 = 1, and

so forth.

At this point we should again recall that our numeration system
is based on a base of ten. Each position in a numeral can be expressed
as a power of the base. The power is indicated with an exponent.
Knowing these things we can (1) write any quantity that we wish,
and (2) write the quantity in a system of numeration of any base we
wish.



The place value chart may be generalized by using the letter B to
represent any base as in the chart below. A chart like this gives

a pattern of determining the value of each place or position in any
system of numeration which uses place value as powers of a base.

ANY BASE

0 0 0 0 0
O 0 0 0 0

vl orl 1,1 orl v4 v4 v4
4J PI 4J u 4J Ca u 4J 4J
er4 vi vl vl vI v4 .A
coMM oN Ca )4 X O .m m

oo o o 0 o o
14 64 0. ta 0 Cu 64 O. PI 0. as 04 63

1 4 4 ) 4 N 1.14)4 )4 44 X 4+X 44 )4 44 44
o

fa M
o

fa 60
o

64
o

as
o

al
ota o

M e
r4

e e e 0 0 M1XX 8XX i M
X 1 M 1 M 1 m

e

0 64 FQ 0 64 PI 0 la 0 0 64 0 64 1 MIC g ca o
4............ )

B
7 B6 B5 B4 83 B2 B1 BO

The names for each position, such as thousand, etc., could not

be used for a base other than ten without confusion. Usually these

are expressed in other bases in terms of the value which they would

have in base ten. For example, in a base of three the position
occupied by B2 would be equivalent to 3 x 3 (or the B x B), which

would have a value of nine in base ten. In a base three system of

notation, the base ten values of the first three positions would be:

ones, threes, and nines. Therefore, the numeral 100 in base three

would be written in expanded form as 1(0) 4- 0(3) + 0(1), indicating

a value of only 9 in base ten.

B
5

BASE OF THREE

B4 B3 B2 B1 B0

21
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It is evident from the foregoing considerations that memoriza-
tion of the names for place value in base ten offers no real under-
standing of the fundamental properties of a system of mmmeration
which employs a model group and positional notation. It is essential
that place value be understood in terms of the powers of a base.
It is not enough to teach students that we count and compute in groups
of ten. Skill in computing requires students to understand the make-
un of the nvAt011-

make-
up
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PART III. OTHER SYSTEMS AND BASES

1. Arabian
2. Babylonian
3. Egyptian

4. Greek
5. Hindu
6. Phoenician

THE BEGINNINGS OF MATHEMATICS

7. Roman
8. Sumerian

We believe that the first mathematical systems were produced by

ancient civilizations clustered around the Mediterranean Sea and the

Indian Ocean. Archeological remains give us some idea as to how
people living as long as 6,000 years ago did their computing.
Surprisingly, they had many advanced ideas about mathematics.

11.
AribteAlINWAY,
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The use of maps and globes to identify the places of origin of

various numeration systems would be very appropriate at this time.

A time line extending to about 6,000 B.C. could be used "3 enhance

the study of centuries by relating it to the development of mathematics.

A similarly designed time line illustrating placement of major histc

developments adds much interest. Important dates in economic and 3:

development should be included, indicating the close relationshlp between

cultural progress and the mathematics needed. Investigations night

consist of a comparison of distances traveled in ancient Egypt with

those traveled today and the numerical representations needed to

record them. A similar comparison could be made between the units

of measure used in ancient times and the more precise and standardized

measures needed today.
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THE EGYPTIAN NUMERATION SYSTEM

Egypt is one of the oldest civilizations of which we have a
written record. From its temples and tombs, constructed some four to
six thousand years ago, we have been able to learn a great deal
about the life of the people and their mathematics. They seem to have
been a clever folk, quick to invent mathematical methods that
would aid them in their daily pursuits. The Egyptians, Sumerians,
Babylonians, Arabians, Hindus, Greeks, and Romans have contributed
to our mathematical system.

The Egyptians and the people of other countries in this area
used a picture writing called hieroglyphics for words and for the
quantities that they wished to represent. The earliest of these
hieroglyphics were very simple. Man appears to have done his
computing at first by drawing simple pictures to represent quantities.
For instance:

for one sheep

*;1) for two sheep

It is easy to see how something like this could lead to a hieroglyphic
writing and numeration system. There is some indication that.men
once wrote words for each number. Instead of making a symbol such as
6 or 7, they wrote a word meaning six or seven. It would be very
difficult to do much computing with this kind of a system. Symbols

were probably invented as a matter of convenience.



One of the oldest of all these systems of symbols, the Egyptian,
is quite remarkable for its simplicity and usefulness. The Egyptian
numerals were written in hieroglyphics. There are words in our
language which could be expressed in that manner. Watershed, water
wheel, water snake, and the proper name Waterman might be written
in hieroglyphics:

water shed o e water snakeNii, /CO

water wheel 04%,,de Waterman 0

An understanding of hieroglyphics could be developed for
primary children, using flannelboard cutouts. Intermediate grade
students might investigate different hieroglyphic systems or produce
their own, using clay and primitive handmade tools.

The Egyptians simply made marks or slashes for the numbers 1
through 9. Marks are easier to read when grouped. This is how they
might have appeared:

1 2 3 4 5 6 7 8 9

III
11 HI HI 101 111

I II III 1111' III III 101 1111 III

10 n heel bone

100 coil of rope

1,000 lotus flower

10,000 bent line

100,000 burbot (fish)

1,000,000 man in astonishment

25
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We do not know why they chose these particular symbols. One
might imagine that a number like a million would be represented as a
"man in astonishment" who was simply overcome by such a large number.
This reminds us of the very simple number system: "one, two, some,
and many.

Show primary children the Egyptian system of using slashes to
represent quantities from one through nine in a 1-1 relationship.
Describe the kinds of materials used for computing in a land which had
no paper--until the invention of papyrus. Encourage youngsters to use
materials other than paper and pencil, such as clay, soft stone, and
sticks. Point out that /I/ is more easily read as "six" than //////

///
because the slashes are mosped. Ask youngsters for suggestions as to
the best way to"think" of each quantity. Even in this simple system
and with crude materials there is a certain aesthetic appeal in
writing numerals that are easily read.

The formation of the numerals is demonstrated in the following
chart. Present as much as is suited to the students' abilities.
It should be noted that there are many different ways to group the
symbols because there is no place value. For example, 500 could be
written 9

7'
, or *292 , or ,/952 (Chart on page 27).

A chart similar to the one below can be developed to help
children understand our Hindu-Arabic system of numeration.

ones 1 2 3 5 6 7 8 9

tens 10 20 30 90 60 70 80 90

hundreds 100 200 300 400 . 500 600 700 800 900

thousands 1000 2000 3000 4000 5000 6000 7000 8000 9000

Point out to students that after we have represented the counting
numbers through nine with numerals, we have used all of the symbols

which we need in a base of ten. We then symbolize the group of ten

as 10 which indicates 1 ten and 0 ones. Counting again we combine all
the symbols in order, writing 10, 11, 12, 13, 14, 15, 16, 17, 13,

19,... We again have counted to the next group of ten. We rave

accumulated two groups of ten. We write it as 20, which indicates

2 tens plus 0 ones.

414



(Chart from Page 26)
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The hundreds board could be introduced at this time in connection
with the Egyptian system. Intermediate -grade youngsters could
make portions of a hundreds board in the Egyptian system and make
comparisons with the Hindu-Arabic. It should soon become apparent
that the Egyptian system required very long numerals. In addition
to acquiring historical background in the development of mathematics,
students could quickly identify the advantages of .he base ten
system. A suggested comparison is shown below.

1 2 3 4
/1 /2. /3 /4- /6
2/ 22 23 24,
3/ 32 33 34

42 43 0

/ /// , u m
nu A///

I
I

/1
MU

) ' t1.
ft

111,0
On

II

la1)

/4
AC I

a r) 1l 11,)
1

AA
anti_nnu.nan.

141 On rI

Encourage students to investigate the relationship between
the materials available to the early Egyptians and possible methods
of computation. Point out that the numerals were made in clay or
chipped in sandstone. Let students invent algorisms and do sims a
computation in this fashion. Such a lesson points out the close
relationship between the culture and the mathematics of the time.
Clay and soft stone may be purchas ' from art suppliers.

The Egyptians had no zero. They had no need of it in this
system. The zero was to come many years later. If we write a few
Egyptian numerals, this will be evident.

16
n III III n
nn 111

III
nn:.

56 nnnim In.nnn.

101 I: (6.1 1.(b.

nnni,289 iii
\v:

ri11111111

6,001 a,

IIInnnninnnn.9-91.

1,000,001

WIZ
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Since the Egyptians did not use place value, it would have made

no difference to them if 122 were written as,R d , orrw1911,
These numerals are written with the principle of addition: 100 + 10 +
10 +1 + 1, 10 + 10 + 100 + 1 + 1, and 1 + 1 + 100 + 10 + 10 all equal
122. Accordingly, it is rather easy to compute in Egyptian
hieroglyphics because all we have to do is to count the number of times
a symbol appears, and regroup when necessary.

ADDITION IN HIEROGLYPHICS

A few examples will show a manner of regrouping in the operation
of addition in the Egyptian system. The algorism or arrangement
of the symbols in a numeral does not make any difference; it will be
easier, however, to keep them in the order of a place value to which
we are accustomed.

n n itil

1. 48 ii t
+6

"51

n n
nnn 1111

5(10) + 4(1) = 54

2. 24

+32 nn liii
56

n n.n
n n
nnn
5(10) + 6(1) = 56

The total of 14 ones and 4 tens
may be regrouped and written as
5 tens + 4 ones.

No regrouping is needed in this
example. It is only necessary
to copy the symbols in the addends
into the sum.

29



The Egyptian system is like ours in that if we have enough
tens, hundreds, etc., we "carry" (regroup) them in the next place.
Doing examples like these helps to make this clear. When students
use the Egyptian system, it might help to cross off the symbols that
are regrouped in order to avoid counting the symbols twice.
Students should be encouraged tc experiment and to invent suitable
algorisms for computing.

The following example suggests algorisms which might be used
for more difficult com9utation.

49
487

136 .111nnnn
nnrinnnrm nit

rwl 11,

//// ///

I

nn I),
100 + 30 + 6

sum after
regrouping

Count the tens and ones and write them down, as 12 tens and 16
ones (this is the first sum). Rewrite the 12 tens as 1 hundred and
2 tens. Rewrite the 16 ones as 1 ten and 6 ones (this is the second

n /1/
sum). The final sum isinnt// (100 + 30 + 6 = 136). It would also
be possible to regroup enough ones to make a ten and enough tens to
make a hundred and write them down in the first place. Exercises
like that above furnish a visual example of the development of
algorisms for computation and methods of regrouping in positional
notation. A longer addition example would be done in the same way
as this one. Encourage students to develop their own methods for
computing and let the class discuss advantages and disadvantages.
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THE BABYLONIAN SYSTEM

The Babylonian system is of special interest since it relates

to our recording of time, which can be computed in a base of sixty.

Such computation might be illustrated as follows:

1 hour 45 minutes le(regroup 60 minutes as 1 hour)

+ 3 hours 50 minutes 1 hour 45 minutes

4 hours 95 minutes OR +3 hours 50 minutes

+ 1 hour -60 minutes 5 hours 35 minutes

5 hours 35 minutes

The Babylonians, whose symbols were imprinted in wet clay with a

stylus, represented ten as 4 and one as v . By using place value and

later developing a symbol to represent an empty place, they could write

any amount. This system is based on a model group of sixty. The

chart below shows a comparison of base ten and base sixty.

0
be 0% 01% 01% 01%

Oen ON 14 0r4 0 ..... 0 r4 0 0
ci. 8r... :-'

I.'
...

,..1 ,-1 ,4

1,000's 100's 10's l's

0co es
WI oft.0 0 ON

014 4:0 .0 0
g e %.0../

.0

216,000's 3,600's

r4 Oe
60's

O0

l's

Place value is indicated by writing numerals in columns. The

columns in this system separate the numerals into periods in the same

way as commas do in the Hindu-Arabic.

1

36

60

79

3,611

$11 .11 . i

vJ

444 7,47,;

41 vvvqv
NL,.....,- v v v, v

v 4 v
1 ls 1(1)

36 sr 3(10) 4-6(1)

60 au 1(60)
79 IP 1(60) 4- 1(10) + 9 (1)

3,611 Is 1(3,600) + 0(60) + 10(1) + 1(1)
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As this system developed the columns were not always clearly
shown. Empty columns sometimes were indicated by leaving a larger
space between symbols, instead of using a symbol. Computation and
translation therefore are difficult. There are many variations
as in other numeration systems. The operations in our Rindu-
Arabic system, however, can be demonstrated by doing simple exercises
with the Babylonian symbols. As in the case of the Egyptian system,
students are forced to indicate the regrouping necessary in order to
"carry" or "borrow." The two simple exercises below will suggest some
of the ways that these symbols could be manipulated in computation.

83
+11
94

47

1(60)

1(60) + 23(1) = 83

11(1) . 11

1(60) + 34(1) = 94

Notice that we are forced to think in groups of 60 and that the left
column now includes quantities we mually represent as 2 digit numerals.
Ones' column .has the quantities from 1 to 59 in it, because the second
position or column is that of 60.

48
+17
65

47 V7 47

4,
NY 47 '47
iff 4 4 4

1(60)

48(1) = 48

17(1) n 17

c44g04:4 ,17, Rewrite 1517 as 17;IP

e7 11:7 TT V7 1:7 Rewrite 6 ot as ly (60)

5(1)
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A better understanding of the development of mathematics may be
engendered when students investigate such systems as the Egyptian and
Babylonian. Encourage students to experiment in originating algorisms
for the operations, using only the materials which would have been
available at the time the system was in use. Have supplies of clay,
sandstone, small sticks, etc., for this purpose. The limitations
and advantages of the systems might be compared, Students should
understand that methods of computation and "keeping track" of things
have grown and changed with the needs of the culture and the ingenuity
of mathematicians.

THE GREEK SYSTEM

The ancient Greeks used the letters of their alphabet as symbols
for numerals in their system of numeration. The principle of addition
was applied, as in the Egyptian system, in giving value to the Greek
numerals. Some of these appear below.

1 CC

2 0

3 Y`

alpha 10 C. iota 100 /42 rho

beta 20 Pi kappa 200 6' sigma

gamma 39 X lambda 300 im° tau

(Iota is pronounced yota.)
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Separate symbols were used for each position in a numeral. For
example: The quantity 222 would be writteneW, as 200 plus 20
plus 2, with a different symbol for each value of 2. It is obvious
that this system of numeration would be very confusing when quantities
were written in a narrative context. Various methods were devised
so that the numerals could be distinguished from the letters.
Perhaps this is one reason that the Greeks viewed mathematics as a
recreation and spent a great deal of time on the development of geometry.

ROMAN NUMERALS

In order to write Roman numerala, we use principles of addition,
subtraction, multiplication, and repetition. When this is understood,
reading and writing Roman numerals becomes a simple process.
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The numerals are written with the use of seven symbols: I, V, X,
L, C, D, and M. This is a very old system of notation which we use
today in chapter headings, sections of an outline, clock faces, and
the names of space vehicles such as "Saturn V." Over the centuries
there have been changes in the symbols as we now know them. At the
time Roman numerals first appeared people probably did not use very
large quantities in calculation. As the cultural of the rople
developed and their possessions increased, they had need of a better

system. The symbols were changed to fit particular needs. We are
experiencing a similar need today in computing interplanetary
distances and speed.

The Roman numeral V once was written asA ; M, the symbol for

one thousand, was oncea), or 2 five hundreds put together. There
have been many other changes. A bar over a numeral multiplied it by

1,000. Twenty thousand could be written as 20 Mss in a row or

simply as XX. One million would be M. (1,000 'x 1,000 = 1,000,000)

THE USE OF ADDITION

The Romans used a place value of sorts in that a smaller number
after a larger number was added to the larger number. The following

are examples of the use of addition.

VI (5 + 1 = 6) MDCXX (1000 + 500 + 100 + 10 +

VIII (5 + 1 + 1 + 1 = 8) 10 = 1620)

XII (10 + 1 + 1 = 12) LXXV (50 + 10 + 10 + 5 = 75)
DCCCX (500 +100 + 100 + 100 +

10 = 810)

THE USE OF SUBTRACTION

With the exception of M (1000) and I (as in IIII on clock faces),
no symbol is repeated more than three times. When it becomes necessary

to repeat a symbol four times, a higher one is used and we subtract

once. The underlined numerals use the principle of subtraction.

1 2 3 4 5 6 7 8 9 10

I II III V VI VII VIII X

IV IX

40 50 80 90 100 200 300 400 500 900 1,000

L LXXX C CC CCC u 14

XL XC CD CM
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OTHER BASES

It has been shown that it is possible to symbolize any quantity

with the use of only ten number symbols in a base ten system of

notation. In the base ten system, "ten" is the model group. How-

ever: the base of a numeration system may be any size that is

convenient. It is possible to have a numeration system based on some
other group, such as 12, 7, 6, and so forth. We have used some of

these as bases for a long time without realizing it.

We use a base of twelve in computing linear measurement. If

the computation is thought of as being in a base of twelve, the

operations of addition and subtraction are more understandable.

2 feet 8 inches

+ 3 feet 6 inches

5 feet 14 inches
+ 1 foot -12 inches

6 feet 2 inches (removing 1 model group of 12 and
regrouping it as 1 foot)

5 feet 2 inches
- 2 feet 6 inches

4 feet 12 + 2 inches

- 2 feet 6 inches (regrouping 5 feet 2 inches as 4 feet

2 feet 8 inches 14 inches. Subtraction can now be

completed)

Science and industry find uses for bases other than ten. It is

sometimes desirable to organize a system of numeration to fit a

particular situation. In order to be able to symbolize and to under-

stand another system using a different base, it is well to learn first

to count in the system. As has been pointed out previously, counting

and the use of abase are basic to the operations of addition,

multiplication, division, and subtraction. A further consideration

of counting in the familiar base ten will aid in understanding the

use of a base of seven.

COUNTING IN BASE SEVEN

The base of the system to be used dictates the number of symbols

which will compose the numerals. We employ ten symbols to write the

numerals for all the quantities in base ten: 0, 1, 2, 3, 4, 5, 6, 7,

8, 9 and use positional notation with zero to indicate an empty

position.



36

To do this we give digits two values: (1) An amount which the
digit itself symbolizes (how many), and (2) an amount which it has
due to its position in the numeral, indicating the number of groups
it represents.

When we have counted through nine we use place value and write
10. We call it "ten." Ten is the name of the place which 1 occupies
in the numeral 10. It is also the name of the size of the base of a
base ten system of notation. The numeral. 10 indicates that the base
is taken i tine and that there are 0 ones.

If, instead of counting in groups of ten, we can change the
size of the group and count in a base of seven, then we have changed
the value of the positions in the numerals in the system of notation.
We have, and need, only seven digits, using zero as the numeral that
stands for no objects to indicate an empty place. To understand the
values of each position we need to recall that they are determined as
powers of the base. In base ten we have ones; tens (10 x 1); hundreds
(10 x 10); thousands (10 x 10 x 10); and so forth. In base seven we
have ones; sevens (7 x 1); forty-nines (7 x 7); three-hundred-forty-
threes (7 x 7 x 7); and so forth. The only difference is that we are
accustomed to the names for the value of each position in the numerals
in base ten. We have no such names as "hundred" (10 x 10) for the
value of 7 x 7 in a base of seven. We can either make up new names
for each position or use the name that indicates the value in a base
of ten. Making up new names necessitates extra memory work, so it
will be easier to think of each position in base seven as the name
of its value in base ten.

The digit 7 cannot be used in writing the numerals in base seven,
because seven is the base and is now written as 1 group of sevens and
no ones, with the numeral 10. In order to avoid confusion with base
ten notation (in which the second position has a value of ten), we
will name the digits in the numeral when it is written in base seven.
The numeral 10 will be called "one zero" or "one zero base seven."
The value of the second place has now been changed to seven instead
of ten. For example: Ten in base seven is written as 13 Which
indicates 1 seven plus 3 ones. The numeral 10 in base ten indicates
1 ten plus 0 ones. The base seven numeral 13 and the base ten numeral
10 both have a value of ten.

Numerals in other bases are indicated in two ways--as 13

or as 137. We do not write 13
ten

when we know that the numeral is in

base ten. Neither shall we do so when it is evident that the numeral

is written in base seven. When the base is not evident it will be

indicated with a subscript seven or the digit 7.
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The two charts below illustrate the relation of the size of the
base to the value which the numer*1 represents.

1, 2,

lA
AJ

11

12

13

19

20

21

99

100

BASE TEN

3, 4, 5, 6, 7, 8,

A.VOGUI VVOUADI

= 1(ten) + 1(one)
= 1(ten) + 2(one)
= 1(ten) + 3(one)

= 1(ten) + 9(one)
= 2(ten) + 0(one)
= 2(ten) +

.. .

= 9(ten) + 9(one)
= 1(one hundred)

0(one)

9, ...?

+ 0(ten) +

1,

BASE SEVEN

2, 3, 4, 5, 6, ...?

10 1(seven) .1. 0(one)
11 = 1(seven) + 1(one)
12 = 1(seven) + 2(one)

13 = 1(seven) + 3(one)

16 = 1(seven) 6(one)
20 = 2(seven) + 0(one)
21 = 2(seven) + 1(one)

66 = 6(seven) + 6(one)
100 = l(forty-nine) + 0(seven) +

0(one)

After we count to nine in base ten, the next number is ten, the
base of the system. After we count to six in base seven, the next
number is seven, the base of the system. In base ten, 9 + 1 = 10,

written in expanded notation as 1(10) + 0(1). In base seven, 6 + 1 =
10, written in expanded notation as 1(7) + 0(1). This can be shown

with the familiar regrouping process of addition.

BASE TEN BASE SEVEN

1 (regroup 10 ones as 1 ten) 1 (regroup 7 ones as 1 seven)

9 6
+1 4.1

10 1(ten) + 0(one) 10 1(seven) + 0(one)

A like regrouping takes place in the position of the base squared.
In base ten, 99 + 1 = 100, which represents 1(one hundred) + 0(ten) +
0(one). In base seven, 66 + 1 = 100, which represents l(forty-nine) +
0(seven) + 0(one).

1 (10 tens regrouped as 1 hundred) 1 (7 sevens regrouped

1 (10 ones regrouped as 1 ten) as 1 forty-nine)

99 1 (7 ones regrouped as 1 seven)

+ 1 66

100 1(hundred) + 0(ten) + + 1

0(one) 100 l(forty-nine) + 0(seven) +

0(one)
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PLACE VALUE IN BASE SEVEN (The Abacus and Place Value Charts)

The following charts indicate the names which will be used for
the positions in base seven numerals as campartd to base ten.

doh.

0

14

104 103 102 lol 100
( A

O

73 72 71 70

Positional notation can be demonstrated with an abacus in base
seven in the same manner as in base ten. Such a comparison will serve
to emphasize the importance of the base in a numeration system as
illustrated below.

BASE TEN ABACUS

1 0

za

Push up ten ones
in ones' column,
counting and
writing the
numerals as you
do: 1,2,3,4,5,
6,7,8,9,...?

After 9 we have
no more symbols
to express addi-
tional quantities.
Push down 10 ones,
exchange for 1 ten
bead. Write 10 =
1(10) +OM

Repeit: push up
ten more ones.
Exchange 10 ones
for 1 ten bead.
Write 20 = 2(10) +
0(1).

BASE SEVEN ABACUS

i
/ 0

Push up 7 ones, on
onesecolumn, count-
ing and writing the
numerals as you do:
11029394,5,6100?

After 6 we have no
more symbols to
express additional
quantities. Push
down 7 ones, exchange
for 1 seven bead.
Write 10 = 1(7)
0(1).

Repeat: push up 7

:WM
.11MN
4111MMM
OMM
MEMO
d/MO

more ones. Exchange
for 1 seven bead.
Write 20 = 2(7) +
0(1).

2
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Continue as far as the interests and abilities of the students

warrant. It would be well to symbolize all the counting numbers as

the beads are pushed up and regrouped. This demonstration should be

done slowly and carefully so that the students understand the use

of the model group in the numeral. Compare the numerals in the two

bases. Show that the digit in the second position indicates the

number of times the base is taken. For examp1.1: TNah A4git 7 4n the

numeral 23 indicates 2 times the base. It does not matter what the

base is.

The same emphasis should be put on the use of the base in the

numeral when using place value charts, which can be made in any base.

The illustration below shows a chart in base seven.

000
jg
4./
1t
g01

4401
I 14%1v

$.4

ow*.
tO C40 I.g -

arl

#

0% N.
4.1
04 N
o

14-1 re.

4,0"
ref
r%
.....

to
0 v1
0)

t H
el rt.

V
r%0
04

0 i0
H

4.1 1`*..<

to ..1%0 0
ar.
O%.00

3 gli

Use digits on separate cards and ask students to place them in various

positions, such as representing a numeral which indicates 3 times the

base of seven plus 4 ones. Then compute the value of the base seven

numeral in base ten. The numeral 34 in base seven would be equal to

3(7) plus 4(1) or 25 in base ten (34
seven

represents the same quantity

as 25
ten

).

tIlkwttr,N
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READING NUMERALS IN BASE SEVEN

In order to read as well as to write numerals in another base
we need to establish a method of naming them that is simple and mean-
ingful. When reading numerals in another base, name the digit in the
numeral. Do not call 13 in base seven "thirteen," because this is
very confusing. Call the numeral 13 base seven "one three." Students
should count aloud in base seven until they are familiar with the
numerals: "one, two, three, four, five, six, one zero, one one,
one two, one three, one four, one five, one six, twn zero, two one,
two two..."

The chart below compares large numerals in base seven to those
in base ten. It should be noted that each position would be
represented by the same numeral in both bases. Recall that the base
seven positions are named according to their base ten value. There
fore, to save space the numerals are used rather than the word in
base seven (49's names forty-nines' position).

los

000.000's 100,000's

104 103 102 101 100

10,000's 1,000's 100's 10's l's

76
75 74 73 72 71 70

117,649's 16,807's 2,401's 343's 49's 7's l's

3 2 6 0 2 2

Above we have the numeral. 326,022. Read it "three, two, six,
zero, two, two." No matter what base it is written in, each digit
has a value for the place in which it stands. The places for both
base ten and base seven are indicated in the chart. For instance,
hundreds' place in a base of ten is equal to only forty-pines' place
in base seven. This is reasonable when we consider that the base
is smaller. We can show the value in base ten with expanded
notation. 326,022 3(100,000) + 2(10,000) + 6(1,000) + 0(100) +
2(10) + 2(1). In base ten we read this numeral as "three hundred
twenty-six thousand, twenty-two." As indicated before, we do not
have positiona names for base seven. That is, we do not have a
name that means to us "three-hundred-forty-threes" (7 x 7 x 7)
as we have the word "thousand" that means 10 x 10 x 10 in base ten.
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Therefore, we will read this numeral by simply naming the digits
in order, "three, two, six, zero, two, two." If it is not under-
stood that the base is seven, name the base after naming the digits.

The value of the base seven numeral 326,022 can be computed in
base ten by using the positional value indicated in the chart.

Base seven 326,022 = 3(16,807) + 2(2,401) + 6(343) + 0(49)
2(7) 2(1) = 57,297 in base ten.

Read across the chart below. The second column indicates the
base seven nmmeral for the equivalent amount which is represented in
the first column in base ten. For example: 42 in base ten is
represented as 60 (read it "six zero") in base seven.

BASE TEN

2

3

5
6

7
8

9
10 1 ten + 0 ones

14 1 -ten + 4 ones

15 I -ten + 5 ones
OO

23. 2 tens + 1 one
22 2 'tens + 2 ones
OOOOOOO 0111
43. 4 -tens + 1 one
42 4 tens + 2 ones
43 4 tens + 3 ones

OOOO OOOOOO

48 4 tens + 8 ones
49 4 tens + 9 ones
50 5 tens + 0 ones

OOOOOOO

101 1 hundred + 0 tens + 1 one
342 3 hundreds + 4 tens + 2 ones
343 3 hundreds + 4 tens + 3 ones

2400 2 thousands + 4 hundreds +

0 tens + 0 ones
2401 2 thousands + 4 hundreds +

0 tens + 1 one

BASE SEVEN

1
2

3
4
5
6

10 1 seven + 0 ones
11 1 seven + 1 one
12 1 seven + 2 ones
13 1 seven + 3 ones

01
20 2 sevens + 0 ones
21 2 sevens + 1 one

30 3 sevens + 0 ones
31 3 sevens + 1 one

56 5 sevens + 6 ones
60 6 sevens + 0 ones
61. 6 sevens + 1 one

66 6 sevens + 6 ones
100 1 forty-nine + 0 sevens + 0 ones
101 1 forty-nine + 0 sevens + 1 one

203 2 forty-nines + 0 sevens + 3 ones
666 6 forty-nines + 6 sevens + 6 ones

1000 1 three-hundred-forty-three +
0 forty -nines + 0 sevens + 0 ones

6666 6 three-hundred-forty-threes +
6 forty-nines + 6 sevens + 6 ones

10000 1 two-thousand-four-hundred-one +
0 three-hundred-forty-threes +
0 forty-nines + 0 ones
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Written in expanded notation, the base ten numeral 42 = 4(10) + 2(1).
The same quantity is represented by the base seven numeral 60 = 6(7)
+ 0(1). The two numerals represent the same quantity.

In order to understand the operations, students should develop
a completed chart like the one above by writing all the counting
numbers in expanded form,comparing the numerals in the pwo bases.
This should be done at least up to the base squared (7') ("forty-
nines"). To avoid writing out long place value names, the numerals
could be used. For example: 343's instead of "three- hundred - forty-

threes."

PLACE VALUE IN OTHER BASES

BASE B
6

B
5

B
4

B
3

B
2

B1 BO

10 1,000,000's 100,000's 10,000's 1,000's 100's 10's l's

7 117,649's 16,807's 2,401's 343's 49's 7's l's

2 64's 32's 16's 8's 4's 2.'s l's

3 729's 243's 81's 27's 9's 3's l's

5 15,625's 3,125's 625's 125's 25's 5's l's

The chart above indicates the 1.ase ten value of the positions
in bases seven, two, three, and five. As in the previous charts,
numerals have been used instead of the number names. A chart like
this may be used to convert any base ten numeral to another base by
following the procedure shown below, using the appropriate place value.
To convert the base ten numeral 469 to a base seven numeral:

469
- 343 1 three-hundred-forty-three removed
126
- 98 2 forty-nines removed

28
- 28 4 sevens removed

0 0 ones removed
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Think: Take the largest place value "out of" 469 that is possible.
This is 343. There will be 1(343) in the new numeral. Take out all
that is possible of the next place. This is 98. There will be
2(49) in the new numeral. Take out 4(7). There are no ones remaining.
The new base seven numeral will be 1(343) + 2(49) + 4(7) + 0(1) which
is 1240 Since there are no ones in this numeral, the empty place

must be indicated with a zero. Otherwise there would be only three
positions in the base seven numeral, making it 124 which would be
1(49) + 2(7) + 4(1), the equivalent of only 67 in base ten
(49 + 14 4 TT 67) .

THE NUMB 4R FACTS IN BASE SEVEN

The tables given below are constructed to show addition and
multiplication "facts" in base seven. It is useful to make a table
by referring to the counting chart made previously, and then to
compare the numerals with those in the table.

It xa difficult to "think" in a new base; therefore, in
constructing the table, to find the base seven multiplication fact
for 6 x 6, think: 6 x 6 = 36 in base ten. In the counting chart,
36 in base ten is written 51 (read it "five one") in base seven.
Write 51 in the space for the product of 6 x 6. Expanded form shows

5(7) + 1(1) = 36. Do this for all the spaces. Remember that

since this is a base of seven .here are only seven digits. The numeral
that represents seven (which is written 7 in base ten) is now
written 10 in base seven. At the beginning, think the answer to
problems in base ten and convert to base seven by referring to a

counting chart. After this is done for a while, thinking in base
seven will become natural.

789-974 0-65-4



ADDITION TABLE IN BASE SEVEN

1-10 / 2 3 11. 5 6
0 0 / 2 3 q. A g
/
2
3
g
5
6

/ 2 3 1
2 3 41° 5
3 f 5 6
il. 5 6 /0
5 6 /0 11
6 10 /I 12

5 6 10
6 /0 II
10 // 12
11 /2 /3
12 /3 /Lk
/3 /g /5

MULTIPLICATION TABLE IN BASE SEVEN

0 / 2 3 X 5 6
0 0 0 0 0 0 0 0
/ 0 / 2 3 9- 5 6
2 0 2 * 6 II /3 15
3 03 6 /2 152124
ti 0 4- 11 /5 22 26 33
5 0 5 13 2/ 263Vq2
6 0 6 15 2*331/2 51
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ADDITION IN BASE SEVEN

Unfortunately, it is often possible to compute with little or
no understanding of the processes involved. Such understanding
can be developed by doing simple problems in another numeration
system, since it is almost impossible to come to a solution without
knowing the structure of the system. The following problems arc
computed in both base ten and in base seven. Regrouping in the
base is indicated.

BASE TEN BASE SEVEN

1. 4
+ 2

4(1)

2(1)

6(1)

4

+ 2
6'

4(1)
2 (1)

6(1)6

Since there is no digit with a value over seven, the problem is the
same in both base ten and base seven.

2. 4 4(1) 4 4(1)
+ 3 3(1) + 3 3(1)

7 7(1) 10 1(7) + 0(1)

Seven ones are regrouped in the base seven problem and the sum is
written as 1 times the base plus 0 times one, with the numeral 10.

3. 3 3(1) 3 3(1)
+ 8 8(1) + 11 1(7)
11 1(10) + 1(1) 14 1(7) + 4(1)

In the problem 3 + 8 = 11 in base ten, 10 ones are regrouped as 1 ten.
The sum is written as 1 times the base plus 1 times one, with the
numeral 11. In the base seven problem there is no regrouping necessary
because eight is written 11 in base seven. The sum is 1 times the
base of seven plus 4 ones, or the numeral 14.

4. 23

+

46

There is
equal to

2(10) + 3(1)

2(10) + 3(1)
4(10) + 6(1)

no regrouping necessary in
4(10) + 6(1) in base ten?

32 3(7) + 2(1)

+ 32 3(7) + 2(1)
64 6(7) + 4(1)

either problem. Is 6(7) + 4(1)
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The two examples below demonstrate regrouping in addition in
base ten as compared with the same problem in base seven.

.........,

BASE TEN BASE SEVEN

34 1(10) + 4(1) 46 4(7) + 6(1)
+25 2(10) + 5(1) +34 3(7) + 4(1)
59 5(10) + 9(1) 113 1(49) + 1(7) + 3(1)

In order to do the computation in base seven, the base seven "facts"
are needed. 6 + 4 ones equals 7 + 3 ones. Write 3 in the ones' place
in the sum. Regroup 7 ones as 1 seven. Add 4 + 3 + 1 sevens, which
equals 7 + 1 sevens. Regroup 7 sevens as forty-nine. Write 1 in
sevens' place in the sum. Since 7 sevens have been regrouped as 1
forty-nine, write 1 in forty-nines' place. The answer is 113, 1(49) +
1(7) + 3(1). Compute the value of base seven 113 to see if it equals
59 in base ten.

34266
408

BASE TEN BASE SEVEN

3(100) + 4(10) + 2(1) 666 6(49) + 6(7) + 6(1)
6(10) + 6(1) +123 1(49) + 2(7) + 3(1)

4(100) + 0(10) + 8(1) 1122 1(343) + 1(49) + 2(7) + 2(1)

Sometimes it is helpful to think of the way each sum is written
in another base when computing. Think: 6 + 3 = 9 in base ten;
however, this is written as 12 in base seven. Write 2 in ones' place
in the stun. Regroup ("carry") 1 group of seven. In base ten,
6 + 2 + 1 = 9. This is written as 12 in base seven. Again write 2
in the sum, in sevens' place. In base ten, 6 + 1 + 1 = 8. This is
written in base seven as 11. Write 1 in forty-nines' place in the
sum. Regroup seven forty-nines as 1 three-hundred-forty-three. The
answfm 1122 in base seven.

The twenty-bead abacus can be used to demonstrate the regrouping
needed in different bases. The base ten example 34 + 27 is computed
in both base ten and base seven below. The regrouping is demonstrated
on the diagrams.
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BASE TEN

34 3(10) + 4(1)
+27 2(1b) + 7(1)
61 6(10) + 1(1) BASE TEN ABACUS

}34

327

BASE SEVEN

46
+36

4(7)
3(7)
1(49)

4 6(1)
+ 6(1)
+ 1(7) *5(1)115

3 46.

)36

- g

47

Exchange 10 ones
for 1 ten.

P.4.SE SEVEN ABACUS

Exchange 7 ones
for 1 seven. There
are now 7 sevens on
sevens' column.

Exchange 7 sevens
for 1 forty-nine.
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ADDITION PROBLEMS IN BASE SEVEN

The following is a series of base seven addition problems of
increasing difficulty. Such a series can be used either for enrich-
ment or for understanding. Students should be encouraged to compare
the computation in both bases and to understand the regrouping as it
relates to the base of the system.

BASE TEN BASE SEVEN

1. 5

5

10 1(10) ÷ 0(1)

2. 6

6

12 1(10) + 2(1)

3. 7

7

14 1(10) + 4(1)

4. 8

8

16 1(10) + 6(1)

5. 9

9

18 1(10) + 8(1)

6. 10
10
20 2(10) + 0(1)

7. 11
11
22 2(10) + 2(1)

8. 12
12
24 2(10) + 4(1)

9. 13
13
26 2(10) + 6(1)

10. 14
14
28 2(10) + 8(1)

11. 35

3.5.

70 7(10) + 0(1)

5

5

13

6

6

15

10

10

20

11

11

22

12

12

24

13

13

26

14

14

31

15

15

33

16
16

35

20
20

40

50
50
nr) 1(49) + 3(7) + 0(1)

1(7) + 3(1)

1(7) + 5(1)

2(7) + 0(1)

2(7) + 2(1)

2(7) + 4(1)

2(7) + 6(1)

3(7) + 1(1)

3(7) + 3(1)

3(7) + 5(1)

4(7) + 0(1)
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The addition problems below are computed in both base ten and
base seven. Unless the base seven notation is thoroughly mastered,
each sum should be checked as indicated by comparing the sum with the
equivalent base ten value.

12

71

BASE TEN

8(10) + 3(1)

15

131

BASE SEVEN

1(49) + 4(7) + 6(1) = 8383 83 146

1. 39 54 11. 44 62

39 54 34 46

78 141 78 141

2. 18 24 12. 52 103

18 24 16 22

36 51 68 125

3. 23 32 13. 49 100

41 56 23 32

64 121 72 132

4. 32 44 14. 61 115

15 21 48 66

47 65 109 214

5. 24 33 15. 38 53.

12 15 52 103

36 51 90 156

6. 16 22 16. 87 153

13 16 98 200

29 41 135 353

7. 19 25 17. 98 200

12 15 98 200

31 43 196 400

8. 13 16 18. 57 111

21 30 23 32

34 46 30 143

9. 19 25 19. 61 115

23 32 16 22

42 60 77 140

10. 33 45 20. 29 41

20 26 36 51

53 104 65 122
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MULTIPLICATION IN BASE SEVEN

The examples below are computed
Notice that the familiar algorism is
the base seven notation must be used
that base.

BASE TEN

in both base ten and base seven.
the same in both bases; however,
throughout when computing in

BASE SEVEN

1. 8 11

x3 x 3
24 2(10) + 4(1) 33

Think: 3
which are
4(1).

2. 15
x 4

60

x 8 ones equals 24 ones
regrouped as 2(10) +

Think: 4
which are
4 x 1 ten
plus the 2
ed equals

6(10) + 0(1)

x 5 ones equals 20 ones
regrouped as 2 tens.
equals 4 tens. 4 tens
tens that are regroup-

6 tens.

3. 53
x 24
212 4 x53

106 20 x 53
1272 1(1000) + 2(100) +

(Partial p
ten.)

7(10) + 2(1)

3(7) + 3(1)

Think: 3 x 1 one equals 3 ones,
and 3 x 1 seven equals 3 sevens.

21

x 4
114 1(49) + 1(7) + 4(1)

Think: 4 x 1 one equals 4 ones.
4 x 2 sevens equals 11 (eight)
sevens which are regrouped as 1
forty -Hine plus 1 seven.

104
X 33

315 3 x 104
315 30 x 104
3465 3(343) + 4(49) +

6(7) + 5(1)

roducts are used in base seven in the same manner as in base

4. 79
x7
553 5(100) + 5(10) +

3(1)

142
x 10
1420 1(343) + 4(49) + 2(7)

0(1)

(Notice that the "short way" of multiplying by 10 is the same in base
seven as in base ten. Remember that the numeral 10 represents one of
the base of the system in both base seven and base ten.)
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The following problems might be computed in base ten, then con-
verted to base seven and computed in that base. The products can be
checked by comparison to base ten, as indicated.

1.

BASE TEN

49
3

100
3

BASE SEVEN

147 300 3(49) + 0(7) + 0(1) = 147

2. 24 33
2 2

48 66 6(7) + 6(1) = 48

3. 14 20
4 4

56 110 1(49) + 1(7) + 0(1) = 56

4. 21 30
6 6

126 240 2(49) + 4(7) + 0(1) = 126

5. 35 50
7 10

245 500 5(49) + 0(7) + 0(1) = 245

6. 42 60
8 11

336 60
60
660 6(49) + 6(7) + 0(1) = 336

7. 349 1006
8 11

2792 1006
1006
11066 1(2401) + 1(343) + 0(49) +

6(7) + 6(1) = 2792 .

8. 1072 3061
12 15

2144 21425
1072 3061
12864 52335 5(2401) + 2(343) + 3(49) +

3(7) + 5(1) = 12864

9. 364 1030
14 20

1456 20600 2(2401) + 0(343) + 6(49) +
364 0(7) + 0(1) = 5096
5096

10. 98 200

4 4
392 1100 1(343) + 1(49) + 0(7) + 0(1) =392

t"4
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SUBTRACTION IN BASE SEVEN

The algorisms for subtraction in base seven are the same at
base ten, except that the regrouping is done with a model group or

seven instead of ten. The familiar "borrowing" algorism is shown
below.

22
A

16

1 ten 2 + 10 ones
1 tens + / ones

6 ones
1 ten + 6 ones

It may increase understanding if the 1 ten which is "borrowed"
(regrouped as 10 ones) is thought of as being added to the ones which
are already in ones' place. Writing the numeral 1 beside the 2 makes the
regrouped sum of 12 because 1(10) + 2(1) = 12. This should be thorough-

ly understood.

BASE TEN

22

-6
16

BASE SEVEN

2 sevens 1 + 7 ones (or 8 ones)

31 $ sevens + / ones
- 6 6 ones
22 2 sevens + 2 ones = 16

The same concept is presented in the base seven problem above.
When 1 seven is "borrowed" or regrouped as 7 ones, the value of ones'
place is the sum of 1 seven 1 one or eight, which is written as 11

in base seven. The subtraction fact 11 - 6 = 2 is needed to compute

the difference in ones' place.

An understanding of subtraction can be gained by computing in

other bases. Other methods can be developed, such as equal additions
and complements, as experimental and enrichment activities.

LONG DIVISION IN BASE SEVEN

It is possible to do division in base seven either as multiple

subtraction or in the form I , sometimes called the "divided

by" form. Multiple subtraction is easier for beginners, as it follows



from the concepts presented under subtraction. The same examples are

computed in both bases below.

BASE TEN BASE SEVEN

7 r. 3 10

52
49

10/103
-10

3 63

-10

53

r. 3
1 forty-nine + 0 sevens + 3 ones

1 - 1 seven + 0 ones
6 sevens + 3 ones

1 - 1 seven + 0 ones
53 5 sevens + 3 ones

- 10 1 - 1 seven + 0 ones

43 4 sevens + 3 ones

- 10 1 - 1 seven __+ 0 ones

33 3 sevens + 3 ones

-10 1 - 1 seven + 0 ones

23 2 sevens + 3 ones

0 1 - 1 seven + 0 ones
13 1 seven + 3 ones
-10 1 - 1 seven + 0 ones

3 10 1(7)+0(1) 3 ones

10 1(7)+0(1)

X7 x10 1(7)+0(1)

49 100 1(49)+0(7)+0(1)

+3 + 3

52 103 1(49)+0(7)+3(1) = 52 in base ten

2. 12 r.2 15 r.2

8/98 11/ 200
-66 6

101

-66 6

2 15 1(7) + 5(1) = 12

12 15

x8 x11

96 15

+2 15

98 165
+ 2

200

Think: 1 x 5 = 5, 1 x 1 = 1, and repeat. Add the remainder. Remember,

5 + 2 = 10, or one group of seven. "Carry" 1 seven. This makes

7 sevens, including the one you are "carrying." Put down the zero and

"carry" again. You now have 1 + 1 = 2. Your answer is 2(49) + 0(7) +

0(1).
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DIVISION PROBLEMS IN BASE SEVEN

Remember, as you work in base seven, you must either convert
each number to base seven or else think in the base.

BASE TEN

1. 11 r. 3

BASE SEVEN

14 r. 3

1(7) -4 4(1) 11

9/102
-63 7

12/204.

-120 10

+ 4
39
-36 +4

54
- 51

3 11

Chedk: 11

x9 9
99

3

14

x12

14

31
4. 3 14
102 201

+3
204 2(49) 4- 0(7) + 4(1) = 102

2. 29 r. 3 41 r. 3
7/206 10/413

-49 7 -100 10
157 313
-49 7 -100 10
108 213
-49 7 -100 10
59 MS
-49 7 -100 10

10 14
- 7 -10 1

3 1 3 Zr 4(7) qt. 1(1) = 29

Check: 29 41
x 7 x10
203 410
+3 +3
206 413 4(49) + 1(7) + 3(1) = 206

3. 40 r. 10 55 r. 13
12/490 15/1300

48 114
10 130

Check: 40
x12
30

40
480
10

490

114
13

55

x15
404
55

1254
13

1300 1(343) J.- 3(49) -4 0(7) 490

1
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PART IV. TEACHING THE OPERATIONS WITH LEARNING AIDS

NUMBER SYSTEMS

At the elementary levels we are concerned with the four funda-
mental operations of addition, subtraction, multiplication, and divi-
sion. For the most part, elementary mathematics confines the opera-
tions within the system of natural numbers (positive integers), zero,
and positive rational (fractional) numbers. Modern instructional
programs incorporate the use of negative numbers and so include opera-
tions with positive and negative integers, zero, and positive and
negative rational numbers.

As has been pointed out, new number systems have been contrived
as man has found a need for them. Negative numbers are needed to
describe physical situations such as "below zero" temperatures and to
furnish an answer to expressions of the type 2 - 3 = ? A horizontal
thermometer can be used as a number line to illustrate both situations.

3 DEGREES afiTiotv ZERO, -3

A measure of the temperature three degrees below zero would be
represented by the point corresponding to -30 on the "thermometer

number line." Elementary children too often have been told that
"there is no answer" to such expressions as 2 - 3 = ? or that one
"always has to put the larger number first in a subtraction problem."
It can be seen on the number line that if the temperature dropped 3°

from 2° above zero, the reading would be -1°. The example 2 - 3 = -1

could be employed to represent this situation.

A number line is one of the most versatile and useful means of
representing the real number system and should be so constructed that
it presents a true picture (graph) of the numbers which are used in

computation. It should be considered as a geometric line consisting

of an infinite set of points and continuing without interruption_ in

both directions.
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A point, zero, is chosen at random on the line. One is repre-
sented as an arbitrary distance to the right of zero ((Q 1 ).
Segments of the length from 0 to 1 are then used to establish the suc-
cessive points of the line that represent the counting numbers, often
called the natural numbers. It should be remembered that one and only
one point will correspond to each number. As the number line is to
represent .the negative numbers also, the line is extended to the left
of zero in successive unit lengths to establish points which represent
the negative integers.

-'2 -I oi,a3V....5-6

The line now represents the integers, the positive and negative numbers,
and zero, which is considered neither positive or negative.

-3 -1 0 I a 3 4 ,5"

NEGATIVE ~BEIM
ea< I

>
POST /YE' NUMBERS

1111110
IvosotrivE INTEGERS POSITIVE INTEGERS

a AMIN! I

0
THE SET OF /NTEGER.5 b1164t10/414. 2Arle0

$ 31w

It is evident that it would be possible to locate points repre-
senting any fractional part of a unit length from 0 to 1 by locating
points corresponding to successively smaller divisions.

0

These are the rational numbers, it being understood that a rational
number can be expressed as the quotient of two integers (2/1, 1/3,
4/5, -2/7...), it being understood that division by zero is undefined,
of the for a/b (b 0). Number lines can be made to represent all
the numbers commonly used for computation in elementary mathematics.
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Since the number line is a continuous geometric line made up

of an infinite set of points, it may also be seen to represent the

irrational numbers, those numbers which cannot be expressed as the

quotient of two integers.

Consider the expression 1, 4 (read "the square root of 4"),

indicating that the number is to be found which multiplied by itself

equals 4. This number is 2. It is found on the number line at the

point 2. However, ir-3'--- could not be identified as an exact

point of a number line consisting of only points corresponding to the

rational number that multiplied by itself will give us 5.

..5C3 = 9

In this way the line represents the set of positive integers,

zero, the negative integers, the rationale and the irrationals. These

combine to represent the real number system which can be shown by a

set of point; as in the following:

-44 -3 -a. -1 0 / 2 3 9 .5° 6

I A I a a A

4416111+,--1........./
NICATIVE NUMBERS 0 //are/RR L NUMBERS

CCder---A------1....1---4 4. _ _ _A f . .
NEGATIVE NTEW-ER5 PDS/7711E mireeRs

N
elerA.afilria 0tszr OF /AerzwER5

MK

NEGATI RAT/OA/ALS 0 POSIT/YE RATIONAL 5

NE REAM ARIA413A-R sieSTE AI

It is not intended that elementary students be totally familiar

with all these subsets of the number system, but it is desirable that

students be aware that such subsets exist. Even primary children can

see the advantage of writing -3° instead of "three degrees below zero."
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The four fundamental operations are not haphazard or accidental
and would be impossible if it were not for the laws that lay down
the rules by which these operations are carried out. Students should
have an acquaintance with these laws not only to develop basic mathe-
matical concepts but also to aid in the understanding and mastery of
computational skills. We will be considering the associative, commu-
tative, and distributive laws or principles, also closure, and the
identity properties of our number system as we deal with the develop-
ment of the operations.

THE OPERATION OP ADDITION

Exercises in the operation of addition are usually presented as
a memory or drill lesson, with little or no attention given to the struc-
tural properties which make it possible. Learning aids can do much to
develop the basic concepts needed to give students a better understand-
ing and to increase their retention of the "facts."

Addition is,a binary operation--an operation on two numbers
which produces a third number, called the sum. To add 3 + 2 + 1 we
find the sum of 3 + 2, which is 5, and then add 5 + 1 = 6. The sum
could also be computed as 3 + 2 + 1 by combining 2 + 1 as 3 then
adding 3 + 3, yielding the sum 6. In either case the sum will be
the same. The grouping of 3, 2, and 1 in addition may be written as
(3 + 2) + 1 = 6, or 3 + (2 + 1) = 6. The associative law states that,
without changing the order of the addends, any grouping is possible to
find the sum.

The example 4 + 2 + 1 = 7 may be added as (4 + 2) + 1 = 6 + 1 = 7
or as 4 + (2 + 1) = 4 + 3 = 7. It does not make any difference with
which "neighbor" the addends are paired. This may be demonstrated by
the number line, the counting frame, counting sticks, and other learning
aids.

41.z

o / 2 3 it .5' 6

42.4- /

-- A -/ 0 / 2 3 .54 ,59 6
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4+4
Ill- 11111 1 61'/=

91(2*/)=

tit Fill It-1-4643-=7

Emphasize that 4 + 2 names 6. fc

then add 6 +1 and name the sum /.

Emphasize that 2 + 1 names 3. wa

then add 4 + 3 and name the sum 7.

Counting devices are excellent to demonstrate different names
for the same quantity, as shown below(4 + 2 for 6, 2 + 1 for 3. ..).

OM
*2) + =?
6+-1=7

[1110M
f*(424.0=?

.9 = 7

0o
C, a ,c)

(41 f/= ?

O CZ, (CD 0)
o 4:)

74.(74/)=?
*3 =7

The use of the associative property can be demonstrated by the
regrouping in the following exampleb.

1 (10 ones regrouped as 1 ten,

18 + 3 = (10 + 8) +3 18 18

= 10 + (8 + 3) + 3 + 3

= 10 + 11 11 (8 + 3) 21

=21 10
21

789-974 0-65-5
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If it were not for the property of closure in the number system,
it would be impossible to express all sums which are needed. The word
closure is used here in the sense of "being included in." The property
of closure indicates that an operation performed within the system
will yield a number which is also in the system. The operation of
addition is closed within the set of natural numbers. This means that
the sum of any two natural numbers will always be a natural number. We
may illustrate this with the number line, when the line is considered
as a graph of the real number system extending without interruption in
both directions, it can be seen that the sum of any number of addends
may be expressed with a third number and this number will be in the
system of natural numbers. Considering that addition is a binary
operation, we assume that: For any pair of natural numbers there
exists a natural number which expresses their sum.

The property of closure also assumes that the sum of any pair of
natural numbers is a unique number. On the number line, 2 + 3 = 5 may
be thought of as a process of counting.

The commutative law states that the order, of the addends makes
no difference in the sum. It can be demonstrated on the number line
that 5 3 = 8 and that 3 + 5 = 8.

0 / 7 6'
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9 9 /o if/ /2 /3 /4/ /.5 /6 /7

An application of the commutative law reduces the number of
addition facts necessary to commit to memory. Completion of the
chart above would result in an image of the facts which are shown.
For example, the intersection of the "8" column and the "4" row
yields the same sum as the intersection of the "4" column and the
"8" row.
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The number 0 has a special property in that the addition of
zero to any natural number does not change the number. Zero is called
the identity element (number) for the operation of addition. If an
empty set is combined with a set of 4, or a set of 4 is combined with
an empty set (addition is commutative) , the sum is 4. Many
concrete devices can be used to demonstrate the identity element 0.
In the illustration below there are 4 ones in the ones' pocket. As
previously stated, 0 represents the absence of quantity. If 0 ones
are added, the ones' pocket still contains 4 ones. Similar demonstrations
can be done with counting sticks, flannelboard cutouts, and so forth.

HUNDREDS TENS ONES

ot3o0 Ioo
di ONE S PL US, 0 ONES = ONES

4 I (ONE) 1- O (oNE)=
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Addition is combining groups by irregular counting and regrouping
in the base of the numeration system. In base ten this is done in
groups of ten and powers of ten. Students should understand that
they are manipulating groups rather than simply memorizing facts. Instead of
cniy remenberi08 the sum of 8 and 5, a student should understand that
a group of 8 and a group of 3 can be regrouped as a group of 1 ten and
a group of 3 ones, and that this regrouping is represented by the
numeral 13. Two algorisms are suggested below which show ones
and tens regrouped in addition.

4-.........10 tens regrouped as 1 hundred

11*---10 ones regrouped as 1 ten 367

367 294
294 11 (7 + 4 = 11)

661 150 (60 -1- 90 = 150)

500 (300 +200 = 500)
661

The regrouping for this example can b demonstrated on an abacus

as shown in the illustration below:

Regroup 10 ones
as 1 ten.

Regroup 10 tens
as 1 hundred.



-

63

Place value charts on chalkboard panels are useful to help students

understand regrouping and positional notation in"ragged" addition,

such as 3 145 + 206 + 1020.

83 82- 8' C9°

t16.4.44044, flumika., tina.. ernm.
1300

Q
(2)0 GE

(in
cm ID r23 0

ill 3+54.6+0=1 qal
MI (41 WO + ao = o

I3 /00 +2eo =3oo

/ coo
13:1 C2

The chart can be constructed to any degree of sophistication

desired. A place value chart employing magnetized numerals which can
be arranged to indicate grouping and regrouping is particularly useful.

It should, however, not be used as a. "gadget" for mechanically repre-

senting the algorism, but to develop real understanding of the reason

for "keeping the columns straight." Students should learn that the

digits 2 and 0 are in the column represented by the base squared (102),

not simply that this is hundreds' place, and so on. The regrouping

can be illustrated on the chalkboard as indicated.

Magnetic or flannelboard numerals may be used to make displays

similar to the arrangements below. The number pairs which yield the
100 "facts" when the operation of addition is performed on the natural

number's and zero are shown in Table A. It is 10 pairs wide and 10 pairs

long. In Table B, the sums yielded under the operation have been sub-

stituted for each of the number pairs in Table A.
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Many patterns may be investigated. For example, the broken
diagonal represents the pairs that form the possible combinations
which yield the sum 9. The solid diagonal transverses the "doubles."
With manipulative numerals children may remove and display such things
as: All the number pairs that yield the sum of 8; the sums that are
doubles; all the addition facts that are needed to compute 23 + 85;
and so on.

11

5

g

TABLE A

2
3

7

8
9

TABLE B
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THE OPERATION OF SUBTRACTION

Subtraction is the inverse operation of addition. Subtraction
"undoes" addition. Although we are accustomed to memorizing the sub-
traction facts, this is not necessary when addition and subtraction
are considered as inverse operations of each other. A portion of the
chart 'All make, this ev4AAnt,

inverse
operation4

If

/

.2 2

3 3 9- 6

2

3

6 8

Under the operation of addition, 3 and 2 in either order yield the sum
5. The inverse operation indicates 5-3 = 2 and 5 - 2 = 3. We may
assume that for every addition fact students will know one other addi-
tion fact (because addition is commutative), and they will also know
two subtraction facts by performing the inverse operation.

3 + 2 = 5 5 - 2 = 3
2 + 3 = 5 5 - 3 = 2

The addition and subtraction facts should be demonstrated by the
use of objects so that children will see this concretely.

+ z = 3

Demonstrations may be done with any suitable counters. Students
themselves should manipulate the learning aid and be encouraged to dis-
cover the facts. The quantity subtracted should be physically removed,
then the concrete manipulation represented with an algorism. As the
facts are developed they should be written on the chalkboard and
discussed until students do not need to depend on the use of aids. It

should be emphasized that the operation is being performed on numbers
and that these are cardinal numbers of each set (the "how many" concept
of numbers), not the concrete objects. We operate on numbers, not on

things.

," , , ,
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The number line can also be used to demonstrate subtraction as
t'o inverse operation of addition.

(3+2)-2=3
3+0-2)=3

2 4-3 = 2÷3=
I , (2+3)-3 =2.

0 2 3 4)4 5' 2 (3 3) = 2.

On the number line it can be seen that subtraction may also be
Awught of as identification of the missing addend. The expression
- 2 = ? may be written as 2 .+? = 5, indicating that one addend

end the sum are known and it is necessary to find the missing addend.
To compute 2 ? = 5 on the number line, locate the point 2, then find
the number of "steps" it requires to arrive at 5. Three steps are
needed. It can be seen that it requires a distance of 3 units to
arrive at the point 5. The missing addend is 3; the expression can
now be written as 2 + 3 = 5. Other subtraction facts may be developed
with the same procedure.

Subtraction is a binary operation (an operation performed on two
numbers). It is not associative. The expression 5 - 3 - 2 has no
waning unless it is defined as to the manner of grouping. The
expression 5 - (3 - 2) could be considered as 5 - 1 = 4. The expression
(5 - 3) - 2 could be considered as 2 - 2 = O. In other words, 3 - (3 -
2) 4 (5 - 3) - 2 when the expressions in the parentheses are considered
as representing one quantity.

In the expression 4 - 3 = 1, the sum is 4, the addends are 3 and 1.
In the expression 3 - 4 = ? the sum is 3, the known addend is 4. The
missing addend cannot be expressed with a natural number or zero. This
can be shown on the number line as below.
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Should children become familiar, with the number line to the extent
that they develop an intuitive understanding of the expression 3 - 4 =
-1, they should not be discouraged.

The subtraction chart below will help to show that more numbers
than the natural numbers and zero would be needed in order to make
subtraction commutative. There is no result for the uncompleted portion
of the chart unless negative numbers are employed. For example: The
essing addend for the expression 3 - ? = 4 is found in the row
opposite 3 (the sum) and the column beneath 4 (the known addend). It

can be seen that there is no natural number or zero which will express
the missing addend for the expression 4 ? = 3. This would be in
the line opposite 3 (the sum) and beneath the column 4 (the known
addend). The spac,B is empty. In other words, 4 - 3 4 3 - 4. Wen
the operation is confined to the set of the natural numbers and zero,
magnetic or flannelboard numerals can be used to build displays such
as this:

Z . ° 0 I

p

2 3 5 6 7 3 1
0

1 1

2 2 1

3 3 2 I OCI
g if 3 ,a o
5 51/ 3 2. 1 0,
6 6 5 ' t 3 2. 1 0
7 7 6 54 3 2 1 088765q32 t 0
9 e? 8 7 6 5 9- ..?, Z LO_

sums

KNOWN ADDENDS

MISSING ADDEND5

It can be shown on the number line that zero enables the perfor-
mance of the operation of subtraction on "the same number" (zero enables

us to subtract a number from itself: 5 - 5 = 0).

6-3

1 2. 4 I 2 3 3- 6 7

- .....4vn-0444,44.4,4441mnaSpaPpw4um.40%.*It
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Learning aids furnish excellent opportunities for children to
build good understandings of the order relationships of more than
( >) and less than (). Ask students to demonstrate by matching
whether a set of 5 is more than or less than a set of 3, then to
justify their conclusions and to verbalize their reasons. Use
counters to demonstrate arithmetic expressions such as 5 > 3. (Read
"Five is greater than three.")

Students may show how many things make true sentences from such
as the following:

3= 3* ?

3= 3+2-

.3= ?

= 2.

Encourage students to describe the manipulation of learning aids,
then to symbolize the operation. Reading many mathematical symbols
can begin at a very early grade level and meaning be built as children
learn to write the arithmetic expression which "tells" what is being
done in the concrete manipulation. Use such expressions as: 5 + 3 0

8 + 1, 5 + 3 < 8 + 1, n+ 6 = 6 + n. Help children to give reasons
for their conclusions as to whether the expressions are true or false.

The abacus may be employed to demonstrate regrouping in subtraction
examples. The example 26 - 9 may be computed in the two ways
illustrated below. A twenty-bead abacus is the most convenient for

such manipulation.

26

Exchange 1 ten for
10 ones. Subtract
9 ones. Result:

1(10) + 7(1) = 17

Subtract 1 ten. Re-
place 1 one. Result:
1(10) + 7(1) = 17

2 tens + 6 ones 2 tens + 6 ones

9 ones -1 ten + 1 one (renames 9)

1 ten + 7 ones

Wegua-Ats;,127.4,164,,e-vm .
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The regrouping may be demonstrated as above. Children should
experience many concrete representations before attempting the usual
algorisms which do not present decomposition and regrouping in suffi-
cient detail to develop a real understanding.

Flash cards which encourage students to employ the structural
properties can be used. Cards could be developed like these below
which emphasize understanding rather than the memorization of isolated
facts.

IS SUN
7 KNOWN ADDEND
? MISSING- APPEAL,

19.-3= /1
// 1-3=

/q{-- ?

illMI
/7 -3 =?
3+ =17ii

6 //
if

I f = 6
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Children can and should be encouraged to develop many algorisms
for computing. The operation of subtraction requires time to build
basic understandings of decomposition and regrouping before the algo-
risms are attempted. This can be accomplished effectively with abaci,
counting frames, magnetic counters for the chalkboard, flannelboard cutouts,and
so forth. The learning aid should be chosen so that it is suited to the
level of .understanding of the children.

0, e )o.. *NI*
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THE OPERATION OF MULTIPLICATION

In elementary mathematics multiplication is confined for the most
part to. the set of positive integers. Skill in computation must of
necessity depend on a thorough knowledge of the multiplication facts.
An understanding of the application of the structural properties in
the development of the multiplication algorisms is also desirable.

Concrete devices and learning aids can prove to be of much help in
understanding the reasons for the various techniques employed in
multiplication.

A thorough knowledge of positional notation is basic. Multipli-
cation should be viewed as a distinct operation rather than as only an
extension of the addition operation in which the addends are equal.
Students need to develop sound wIderstandings of the relationship
between multiplication and division. Division then can be considered
as the inverse operation of multiplication, in which the product and
one,factor are known and the missing factor is to be identified. The
various division algorisms are then employed in order to find the
missing factor. This may be computed as multiple subtraction, prior
knowledge of the multiplication facts, and so on. In other words, if
children known the multiplication facts it is not necessary to memorize
a separate set of division facts.

The various properties of multiplication should be applied to the
operation (commutative, associative, distributive aver addition,
closure, and the properties of 0 and I ).

Learning aids can furnish children with many experiences to aid
in understanding multiplication. One of the simplest is to consider
multiplication as equal additions on the number line. The line below
shows 3 x 4 = 12 and 4 x 3 = 12.

Representation of multiplication on the number line is limited
to the size of the line and may become unsuitable for classroom pre-
sentations. When it is used, children shou%d have their own number
lines so that they may participate in the activity. This type of
learning aid is perhaps best used with primary students.
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We can think of multiplication as a pairing operation. The
product of 3 x 4 may be considered as an array in which the members of a
set of 3 are paired with a set of 4, resulting in a total of 12 pairings.
Magnetic or flannelboard cutouts are excellent for this demonstration.
Three things paired with 4 things yields 12 pairs.
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Manipulative numerals can be used to construct an arrangement

which shows the number pairs that yield the 100 multiplication facts.

Table B shows the 'product under the operation for each number pair in

Table A.

0

9

TABLE A

a

TABLE B



72

There are ten elements in the row 0 to 9 and ten elements in the

column 0 to 9. There are 10 x 10 pairings. When the operation of
multiplication is performed the 100 multiplication facts are yielded.
It is evident that the crossed-off section of the chart is a mirror image
of the other part. The order of the factors makes no difference in
the product under the operation of multiplication. Therefore, with
the exception of the "squared" numbers on the diagonal, the number
of facts necessary to commit to memory is reduced by half.

Learning aids make suitable arrays to indicate the product when
multiplication is performed on 2 numbers. A 3 by 6 array shows
the product yielded by the operation of multiplication on 3 and 4.
The two arrays also indicate that multiplication is commutative: 3 x
4 = 4 x 3.

0 0 0 cz0 0000000
3 x 4 array yields 4 x 3 array yields
a product of 12 a product of 12

Magnetic counters or flannelboard devices are suitable for arrays.
Let children demonstrate various "facts," then symbolize these. Ask
that an array be made to show the product of 3 x 6 as in A.

00 00 C.1 C2,
ClCot 000000000

00O
4C:0 C=0 0

CZ) 0 0

00 0
000
GOO

3X6=18 3)( ÷ 3)(3 = 1 8
13

Ask students to arrange the array so that it represents (3 x 3)

+ (3 x 3) as in B. Then symbolize as 3 x 6 I= 3(3 + 3) to show that

multiplication is distributive over addition. Develop other combina-
tions with student participation and experimentation until pupils are
able to verbalize and to write the abstract idea without using aids.

Make a 3 x 6 array on the chalkboard and indicate the distri-
butive principle with lines. Such arrays can be made with counters.

o0 0 0 0 0 0000 0 4. CD 0000 0000 Co 0o o o a C) 00 00
o o a o c 0 a 0 0 co 0 0

13)(2. 3 x 3x 3x2-j
(3X2)+ (3X4) = 3X6 (3)00+ (3)(4= 3x6

3 (2 +1)=3x 6 .3 2) = 3X 6

13X2 3X2. 3X2. I

(3x2)1.(3x2)+(3x2)=3)(6

3[ +(2+2)] = 3X6



Let students experiment and develop arithmetic expressions to
illustrate the concrete manipulations which they are performing.

The associative property of multiplication is important in help
ing students to understand such expressions as 3 x 3 x 2 = ? which
have little meaning to children unless the grouping is indicated:

3 x 3 x 2 = ? (3 x 3) x 2 = 3 x (3 x 2)
9 x 2 = 3 x 6

18 = 18

Students should be encouraged to verbalize their thinking and
to demonstrate with devices, then to participate in developing suitable
algorisms for computation in multiplication.
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The grouping below can be shown with magnetic or flannelboard counters.

4c)0 ° O o a
0 0 c3 c" a a 40A 000o 4;: 00o
00 QC" 00 ocpc, 00
3x2 3Y2 3)(21 13X 3 3X3

3v C3 x 2)( (3X3)

It should be shown that the expressions (3 x 3) x 2 may be thought
of as 2(3 x 3), and (3 x 2) x 3 may be thought of as 3(3 x 2), because
multiplication is commutative. The expressions (3 x 2) and (2 x 3) may
be treated as representing one factor. When children understand the
structural properties they are less likely to conclude that 3 x 3 x 2
is equal to 8 or 11, as is often the case.

It is often extremely difficult to convince youngsters that the
product of any number (n) and zero (0) yields zero, and that the
product of m and 1 is always n. A concrete representation of the
product of any real number and zero and any real number and 1 may be
demonstrated with learning aids. Arrange any number of empty
containers. Place 3 counters in each.

(0000

-3

(0000

3
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The number 3 names the quantity in each container. There is a total
of 4 x 3 (12) counters in all. Place in each container: first 3
counters, then 2, then 1, then none. Show that the total number of the
counters is named by: 4 x 3 (12); 3 x 3 (9); 3 x 2 (6); 3 x 1 (3);
and 3 x 0 (0). Help children to see that regardless of tau number
of containers, the measure of whose contents 4A tern (A), the total

would still be O.

Help students to abstractionize to the point that they can show
Oxn=nx0= 0, andlxn=nx1= n, by application of the
commutative property of multiplication.

THE OPERATION OF DIVISION

Activities which involve a comparison between groups or sets have
been presented under the operation of subtraction. It is now necessary
to employ the concepts of greater than (symbolized>) and less than
(symbolized <) in order to develop an understanding of the algorism
for long division. The symbol > (greater than or equal to) and the
symbol < (less than or equal to) will also need to be employed.

Consider the division example 21 6 = ? The quotient may be
computed by finding the number of times 6 may be subtracted from 21
with or without a remainder. In other words, into how many 6's can
21 be regrouped?

The example can be
demonstrated as in this
algorism, which shows
successive subtractions
of 6's from 21.

6/ 21
6 1 (Six subtracted 1 time)

15

- 6 1 (Six subtracted a second time)
9

- 6 1 (Six subtracted a third time)

3 3 (The sum of the 6's subtracted
is 3. There is a remainder of
3 ones: 21 = (3 x 6) 3.)

This can be shown on the number line as:

RIMAINDER

L3 SIXES 2 ...T/XES

1 a a Ioil<-3 -2 -/ 0 I 2 3 5 6 7 8 10 / / / 2 /3 1* /5 /6 /7 /8 /9 20 21
6 6 6 --04

It is evident from the number line that the operation could be
extended on to the left, passing zero, to include another "step" of 6.
It should therefore be pointed out to students that this operation is
performed on the set of positive intezers.
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The quotient may also be found by reference to the multiplication
"facts." The studentthinks: ? x 6 = 21. If the correct fact
is known a solution can be completed. However, experimentation may
produce any of the following misconceptions, all of which are perfectly
true.

2 r. 9 3 r. 3 1 r. 15
6/ 21 6/ 21 6/ 21

12 18 6

9 3 15

It is evident that youngsters should realize that this algorism
involves the concepts of >, <, =, >, and <.

We now restate the example of 21 + 6 as a consideration of the
greatest number of sixes contained in 21, or ? x 6 < 21.

/6+6=22
< a at I a

0 2 3 9. 5 6 7 e 9 /0 // /2 /3 Pi- /5 /6 /7 /8 /9 20 21 22 23 24#

Reference to a number line shows that the number of 6's must
total an amount less than or equal to 16, because the addition of 6
to 16 would yield an amount in excess of the dividend 21. We there-
fore state this as: 16 < ? x 6 < 21.(Read: "Sixteen is less than or
equal to what (some number) timer 6 which is less than or equal to 21.")
Students should be encouraged to symbolize the thinking needed for the
computation. However, complete mastery in writing an arithmetic sentence
is not the goal here. The object is to help children express the
problem and to recognize an acceptable quotient.

Consider the following expressions as ways of thinking about the
division indicated:

Is 2 x 6 < 21? (Yes)

2 x 6 4- ? = 21 (The student finds that 2 x 6 + 9 = 214
Is 3 x 6 = 21? (The student finds that 3 x 6 + 3 = 21.)

An acceptable quotient is 3 with a remainder of 3.

If the student begins with a quotient > 3 he may think: Is 4 x
6 > 21? Reference to the multiplication facts or to a number 'Line shows
that 4 x 6 > 21. Therefore, 4 may not be used in the quotient. The
student tries: Is 3 x 6 < 21? and proceeds.

The principle of considering > and < can now be utilized in
a more complicated division example, 436 + 12. Thinking of this as
decomposition of the set of 436 into subsets of 12's, we may compute
it as a successive subtraction process.

789-974 0-65-6
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12/ 436

-120 10 twelves (10 x 12 = 120)
316
-240 20 twelves (20 x 12 = 240)
76

- 72 6 twelves (6 x 12 = 72)
4 36 twelves total 36 twelve.e. is contained in

436.)

(There is a remainder of 4 ones.)

Checking: 43E = (36 x 12) + 4

With the familiar algorism 12/ 436 the student may now think:
What is the greatest number of 12's contained in 436, or ? x 12 + ? =
436. The remainder may or may not be zero.

36 r. 4
12/ 436

-360 30 twelves (The digit 3 is placed in tens' position.)
76

;72 6 twelves (The digit 6 is placed in ones' position.)
4 (There is a total of iii twelves in 436.)

(There is a remainder of 4 ones.)

Checking: 436 = (36 x 12) + 4

This algorism may be shortened to the following:

36 r. 4
12/ 436

-36 3 x 12 (The zero is omitted.)
76 ("Bring down" the 6.)

- 72
4

If students have been exposed to a thorough understanding of the
concepts of positional notation, less than or equal to 5.) and greater
than or equal to 0, they are better prepared to cope with the
operation of division as performed on the set of positive integers with
various algorisms. The emphasis should be on understanding the reasons
for the format of the algorism rather than on simply duplicating it.
This understanding is developed by beginning, not with the memorization
of "long division facts," but with the acquisition of a thorough
knowledge of the structural properties and the system of numeration.

The distributive property of division over addition could be

illustrated in the example 12/ 436 by renaming the dividend (product)
436 as 360 L 72 + 4 and indicating division by 12 in some manner as:
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12/ 360 1- 72 + 4

By performing the division operation we find that 360 divided

by 12 yields 30; 72 divided by 12 yields 6; and the remainder is 4.

(Combining: 30 6 = 36 r. 4) The missing factor is 36 and there

is a remainder of 4. We can see that 436 is not exactly divisible

by 12.

A more suitable expression for the example might be:

360 a 72 + 4 = 30 + 6 + 4 = 364
12 12 12 12 12

It is necessary not that students engage in such intricacies of

computation but that they understand the distributive property of

division over addition. This can be more easily demonstrated with

an example in which the dividend is a multiple of the divisor:

12/ 36 = 12/-Y4 r12 = 2 + 1 = 3. In this example the dividend
(product) is exactly divisible by the divisor (known factor) and the

missing factor is easily identified,

Manipulative numerals are particularly well adapted to demon-

strating the distributive property. In the algorism 12/-476" it

is possible to use manipulative numerals, remove the dividend physically,

and substitute 360 72 .1,- 4. Encourage youngsters to experiment

with different expressions for the dividend.

"Dividing and sharing" things is a real-life situation for

primary children. Their world is largely parts of things. The division

operation should not be excluded from their school experiences. Many

learning aids can be employed to develop beginning understandings

of the operation of division. This can be a worthwhile and interesting

discovery process. Learning aids such as counting frames cause less

confusion than devices constructed with removeable beads or sections.

Choose a quantity within the experience of youngsters such as 6.

Represent 6 on the counting frame.

Ask such questions as:

Who can show 6 on the counting frame?
Who can divide 6 in half? (Some children will do this mentally;

others will slide beads apart until they have two equal groups.)

How much is half of 6?
Does this mean 6 divided by 2? Why do you think so?

How can we be cure if 3 is really half of 6? (Let children use

the counting frame to demonstrate their thinking.)
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Change the number to 7. Ask the same questions. Help
children to discover that "we have no number to show half of 7",
or that "it would be 3 and a half". Encourage invention of a way to
write three and one-half. Encourage students to use the device for
experimenting at increasing levels of difficulty.

When these ideas have been developed, ask such questions as:
If ball a umMbor is 3, what is the number? Haw could we move the
beads to find out? (Let students experiment with the counting frame.)

The counting frame or counters can also be used to develop
concepts of quantity. Make a class activity of discovering how we
might show 2 x 3 on the frame or with counters. Discuss whether this
means 2 threes. When the product is found and represented on the
frame, help children to discover that 2 x 3 = 3 x 2, and that
6 3= 2, 6 4. 2 =s3.

X 0 2 3 06(04 .Fe;9C477-OR

0

2

3

/7L

5
UNKNOWN1
FACT-OR

7

8

0 0 0 0 0 © 0 0 0 0
0 / z 3 zi 5" 6 7 8 9
0 2. I/ 6 8 /0 /2 /9 /6 /8
0 a 6 9 /2 /5 /49 z/ 29 27

0 1./ 5 / 2 / 2.0 d 2 4 2 8 3 2 3 6

0 5' 10 /5 2O 25 30 35 90 9S

0 6 12 is Ei 30 36 112 #8 $1

o 7 14/ a/ ze 35' 4/2 119 36 63

o 8 le 24L 32 4i0 44.: 5-616*

631721811

n
o 9 /8 27 36 I i(Skii

Chalkboards which have been divided into grids suitable for making
an arrangement of the multiplication facts can be used to demonstrate
the relationship between multiplication and division. If the product
and one factor are known, the operation of division will yield the
other factor. On the chart above, 24 is identified as the product of 6 and 4.
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If the product 24 and the factor 4 are known: division will yield

the unknown factor, 6. It is therefore evident that if a student

knows that 4 x 6 = 24 he will know three other facts: 6 x 4 = 24

(multiplication is commutative), 24 6 = 4, 24 4 = 6 (identification

of the unknown factor). Classroom activities involving the use of the

structural properties can do much to reduce the task of memorizing

the necessary facts and to increase the understanding basic to

computation.



SO
PART V: FRACTIONS

HISTORY AND DEVELOPMENT

Students who have had the opportunity to understand the
structure and logical development of the number system often find that
fractions are not full of mystery and difficulty, but rather are
useful and can be amnipulated easily.

Like so many other innovations in mathematics, fractions
probably were not created until man found a specific need for some
method of expressing a part of a whole. Even though it is impossible
to identify the exact beginning of fractions, the first use was
doubtless in measurement. We might assume that ancient man may
have been confronted by a situation in which he needed to measure
the distance represented from A to B, and that the only thing he had
to measure it with was a stick this long:

4r7ferr, /r0====
us aim am am am am am ow um OM OW I= 111111M111 11 1111.

94
IA

The distance could be measured in "sticks." When the man began to
measure he found that the measure of the distance from A to B could not

be described in whole "sticks". If he began at A and laid the stick
down once, twice, and then tried again he discovered that it could be
laid down twice with some distance left over that was not the same
length as his measuring stick. The problem remained to name that
distance which lay beyond the point where the second measure ended.
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It then seems obvious that the measure of AB could be described
in terms of "sticks" and "parts of a stick." The whole stick could
be divided into sections or segments, and this would help to describe
more accurately the distance from A to B. The important question
was: How should the stick be divided so that it could be used to
describe the measure of the line? It appeared that the part of stick
left over on the third measure was about the same as the part of stick
that had been used. Therefore, a notch cut in the stick as near the
middle as possible could be used to describe this part-of-a-stick
measure. Remember that the man had no name for the part.

rNOT CH

AumsuRiNG. art cf.<

The man now had a tool which he could carry around with him (move)
and use to measure the distance AB. It could be reapplied to the

distance, and used to describe its measure.

A

FIRST
)01

*SECOND
MEASURE ..I<MEASURE

ono

Now the problem remained to name that quantity which was represented

by the part of a stick indicated by the arrow. If this could be done,
then the measure of the distance AB could be stated in "sticks."

Many centuries passed before the man's action was described by

mathematicians as a division process. The measuring stick would
be considered as 1 whole length and the two equal parts symbolized by

1 divided by 2, later abbreviated to k and called "one-half."
Then the distance from A to B could be accurately described as 22

times the length of the measuring stick' -in this case "2 sticks".

Students in the primary grades are entirely capable of going
through this kind of discovery exercise and are able to find for
themselves the significance of the fraction. The factual history

of fractions can be briefly covered from investigations of early

Egyptian and Roman mathematical writings. There are many reference

materials which furnish rich and rewarding experiences that will help

children to understand and appreciate man's struggle in designing a

mathematics to describe the real world.
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The English wordffractionmderives from the Latin frangere,
meaning"to break." We have another word, "fracture," which has
the same derivation. It seems that early cultures expressed
parts of the whole by any method convenient to their symbolism.
An example of the Egyptian method follows.

Since the Egyptians represented whole units by slashes,

they invented a symbol that meant 1 part of the whole: (=>.
cr.:5

As /1/ represented 3, so /// was used to represent one of three equal

parts of the whole. We would write this as 1. A special symbol was
3

used for 2and for 1 I: . Except for these two all fractions
3"

were expressed as unit fractions, fractions with numerators of I.

This symbolism resulted in some unusual ways of writing fraction

numerals and of computing.

7 11.. 1 4 4:: 4=5
E 2 4 3

illi jg
4 =1 ,1 c-4) (=>

///// ()Mil15 Y '15

=1 1

C12 2 6 -/,

Activities using fraction numerals can be performed with
a variety of measures. Students need to experience measuring rather
than to observe demonstrations. Classroom activities should involve
measures of length, area, volume, weight, time, temperature. After
the concrete experience has initiated a good understanding, encourage
students to develop their own algorisms for treating computation with
whole and fractional measures. A supply should be available to students
so that they may freely check their computation by using the actual
device.

The representation of fractional concepts with concrete materials,
such as culturally significant measures, fraction pies, fraction
boards, and comparative charts, does not always assure that students
will grasp the significance of the manipulation to the use of abstract
symbols. It is not enough to memorize fractional equivalents or tables
of equivalent measures. Students need to be involved in the activity
of developing such relationships. Discovery and experimentation
should be encouraged.
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An arrangement like the one following can aid youngsters in using
measures to develop fractional concepts by which they progress from
the concrete representation to a graphic, then to the abstract
symbol which can be employed in computation.

EIE C
AINEMMENI

rm.%

C c C

C C

C C G cccC6C
pt pt. qt. qt. qt. 96.

1"--1":" --IIC.cc
C IC IG

C C G
C C

C

C

Ir
C

Students can manipulate these and similar devices in developing

their own tables of equivalent measures,Which will prove more
meaningful than "ready-made" ones that are to be memorized. A
suggested classroom procedure is given below.

1. Fill 2 cups, 1 pt., and 3 qt. with liquid. Empty 2 cups into 1

pt. Discuss the conclusions which can be drawn:

2c. = 1 pt.
1 c. = pt.

c. =apt.
Students will see this and

go on.

Develop statements to be completed by students:

3 pt. = ? c. 4 pt. = ? half cups

6 c. = ? pt. 12
c. = ? pt.

Encourage students to develop others.

2. Empty 2 pints into the 1 empty quart. Discuss the conclusions

which can be drawn:

2 pt. = 1 qt.

1 pt. = h qt.
pt. = k qt.
pt. = 1 c.

1 c. = qt. 4 c. = 1 qt.
Students will go on.
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Develop statements to be completed:

2 pt. = ? qt.

4 pt. = ? qt.

Encourage students to develop others.

1
1 pt. ? = qt.

pt. = 7 qt.

Empty the 4 quarts into the gallon. Continue to draw conclusions
and to develop comparative measures involving fractions. Continue
similar activities with other units of measure. Investigate:
(1)The; suitability of the measuring unit for describing the measure
of some object; (2) direct measures, such as the above; and (3) indirect
measures in which some mechanical operation is used, as in clocks.

UNDERSTANDINGS NEEDED

One of the important uses of mathematics is to report characteristics
of quantity in the real world. The most elementary question to be
answered is "How many?" which requires a counting or mapping operation.
Perhaps the next most common question is "How much?" which brings us
to the very large area of measurement.

The historical development of our number system and its logical
growth present an interesting parallel. First, man had a set of
symbols (numerals) which were later given names and represent what we
think of today as number. This process can be called the creation of

the positive integers. Next, man realized that it would be necessary
to divide quantities into smaller subdivisions than could be represented

by only the integers; he therefore developed units signifying quantities
of lesser magnitude than one whole integer. This process gave us
the fractions, which should be referred to as the positive rationals.
Following that came two more logical processes: 1) The extension

of the positive rational system to incorporate the negative rationals;
and 2) the extension taf the positive rational system to include that
conversion point where positives change into negatives and vice versa.
We name that very important point zero.

As a result of this development, we are able to build a number line that

has some very interesting characteristics. It contains the positive
integers, zero, the negativeintegers, and many, many points which lie

between the integers. All of these points go to make up the rational

number system. Yet even though we are now able to identify them by

their mathematical characteristics, we have not completed the system

until we have included one more subsetthe irrationals.
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Consider the number line the way the child in the intermediate
grades views it. He is familiar with a line with the integers and 0,
such as this.

-4 -3 -2 -/ .-5". 6

He also realizes that there are many points which lie between the
integers, as depicted in the following diagram:

_L 3 S 3 741- 8z8µ8
()

A good exercise at this point might be to provide the students
with a treat many number lines, each of which would be considered one
unit long and have the fractional parts marked but not named with
any fraction numeral. Examples would be:

(713
I (The student would write 1/2 in

the G7.)

0.. b 4: ct
(77:1 (: D (The student would probably write

0 in box a, 1/3 in box b, 2/3 in
box c, and 3/3 or 1 in box d.)

C)

This type of exercise could be continued until fraction numerals
including the twelfths were covered.

The next logical step would be to provide students with number
lines one unit long which do not have the fractional values
located by points. The student must approximate or devise other
methods of locating the points and also naming them by writing the

fraction numeral which they represent.



86

Students should be encouraged to use many methods to establish
these understandings.

Examples (consider the halves, fourths, and eighths):

E WHOLE

"MMEMONMIA17111

If the number line is made of flexible material the student can
fold it in half a successive number of times. After being unfolded

it will look like this.

ONE 1,4/H04.E*

dI

/ .3 I

g eye
Exercises of this type enable the student to compare values

of various fractions and establish equivalence relationships between
fractions. Repeated use of the unit number lines referred to above,
with their fractional parts labeled, assists students in discovering
facts like: 2_ 1 2 = 1 , 4

8 4, 4 2 8

If the material from which the number line is made is not
suitable for folding, the same effect may be achieved by having the

student use a strip of paper equivalent in length to the unit line.
Then the paper may be folded and used as a measuring instrument to

locate the correct points. A piece of string, although more difficult

to manage, may enable him to achieve the same results.

At this point the student should develop a clear understanding

of the significance of the fraction numeral and be able to relate

it to a physical quantity, such as a distance on a unit line.

In addition, he should understand that the fraction numeral is composed

of two separa numerals, one which is written above a line (which we

shall call a division line) and one written below it. He also

must understand that even though the fraction numeral is made up of

two individual numerals, these must be thought of together as forming

one symbol which names that part of an object or group of objects

about which one wishes to talk or write.
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The numeral written below the division line is called the denomi-

nator. This numeral really shows the number of equal parts, or sub-

groups, into which the object or group of objects has been divided.

The numeral written above the line of division is called the numerator

and shows the number of equal parts talked or written about.

3 4r-NUMERATOR (tells that 3 of the 4 equal

parts are under consideration)

(LINE OF DIVISION

a-- DENOMINATOR (tells that the unit has been
divided into 4 equal parts)

When students try to divide a unit number line into 3, or 5,

or 7, or any odd number of equal parts in order to find and label

the thirds, fifths, sevenths, etc., they experience difficulty.

They discover that no longer are they able to locate these points

accurately by successively "doubling" the piece of paper equivalent

to the length of the unit number line.

line:

The following technique is suggested. Consider this unit number

0 AIA" W Aft, a"

Assume that you wish to divide it into three equal parts. Select a

ruled sheet of paper such as notebook or tablet paper and place the

un:I t number line at an angle across the page, as in the illustration.

(1) Care must be exercised to
place the ends of the line
exactly on the ruled lines.
Decide which edge of the
unit line is to be div-
ided into equal parts.

(2) If the line is to be
divided into 3 equal parts,
it must lie across 3 spaces.

(3) Locate the points where the
lines intersect the edge of the

unit number line. Remove it and

label the points just marked.

1.

0

HD
a3

V

a,
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If the unit number line is to be divided into fifths, the number
line has to lie across five ruled spaces on the paper; seven spaces
for sevenths; and so on. The next step should be to use this knowledge
to understand equivalent fractions and to develop procedures for finding

common denominators.

The following set of unit number lines illustrates the notation
necessary to compare equivalent fractions. Students need to under-

stand that the unit line represents one whole. Beginning and ending

points are indicated.

0 /V lot/l10 4

o / z
2d

o

ONE L

ONE- arAic7 F.
2 -L. .5- 6 7

8 473- 73-- 73-
I I

O
These unit number lines are to be compared superimposed one upon

the other and manipulated, until the student is able to discover many

facts such as:

(a) 2 m 1 n 4 (b) 1 st 2 la 1 of one half
4 2 8 4 8 2

3 m 6 an 1

4 W (halves)

Procedures of this sort are to be followed until the student is able
to generalize and hopefully do the exercise or provide answers to the

questions without referring to the aids provided by the fraction

number line. Exercises can be made more challenging by including
unit number lines which have been divided into fractional parts
whose denominators have no common multiples.

The next step is to undertake an illustration of the four

fundamental processes with fractions. These can be very effectively

illustrated with the use of unit number line as we consider addition--

for instance, 1+
i

.



(1) Choose the unit number ltae divided into fourths and locate 1

4
ONE WHOL-E"

141

4> 1 3 4

III(2) Choose the unit number line divided into thirds and lnente 1

3

ONE Gv110 L..411

3 .3 -3 .3

0

(3) Place the number lines one beneath the other with the beginning
of the one-third line opposite the point marked 1 on the other.

4
ONE Gu0-$1 ©Z. E

O

2. 3.

tzo >, 1,.."

(4) The problem now is to name the distance equivalent to the length
of the two arrows i (1 1 ).

4 3

(5) After experimentation the student will find that the unit number
line divided into twelfths is the one which will name the combined
length of the two arrows because both fourths and thirds can be
expressed as twelfths.

4e

ONCE' WHOLE

.a. s- 6 2_ g_ 9 Le
is .2 Az IA T a /2. a IA iz i 2 /2

Therefore 1+ 1_ 7 expressed as twelfths: 3 4. 4 7

4 3 12, 12 12 12.

Many more exercises of this type should be experimented with by
the student before he attempts to formalize and develop an algorithm
for the addition of fractions. A. variety of manipulative fractional
learning aids lend themselves to exercises of this kind.

Yv+
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Extending this concept to include mixed numbers has the further
advantage of being almost exactly like the procedure used on the integer
number line for the discovery of addition with the integers.

Since subtraction is the inverse of addition, it is experienced
here in exactly the same manner as subtraction on the integer number
line.

Multiplication, although similar to multiplication on the integer
number line, is a little more difficult. Consider the following cases:

Case I. 1
-2 x 5- ? or

(Remember, multiplication is commutative; therefore, the order of the
factors is unimportant.)

(a) Choose the unit number line divided into thirds.
(b) Locate 1 . The experimental exercise states that two steps

3

of this length are to be taken. Begin at the end or the point 0

ONE WHOLE
0 1 a
3 3 a
cle.----------------

(c) The answer is, of course, 2 .

3

Case II. 1 3 = 9
2 4 or

2 x 1 2-.=
3 I

3

(a) In this case it would not make a great deal of difference
whether one used the unit number line divided into fourths or into
halves.

3

(b) Locate 4 . The problem indicates that we are to take a step

1

which is only 2 of this length.

ONE Ei W L.. EI

PULL EP
(c) After trying several unit number lines we discover that half

of 3 can be named by using the unit number line divided into eights



3

and this unit is equal to 8. We might also take a strip of paper
3

equal in length to 4, fold it in two, then name each half of its

length by comparing with the eighths line.

Division of fractions may be illustrated by the following cases.

1

14. ?Case I.

(a) Choose the line divided into halves.

(b) The division problem indicates that we begin with a distance of
one unit and then determine the number of 1 units contained.

2
(c) Locate the point which is the same as one unit.

ONE W 04 ,E"
0
a z.

Ye.

1

The number of one-halves contained is 2, or 1 '

Case II. 1 .

3

1
?2

2
7

2.

It will be necessary to use 2 unit number lines plus part of
1

2another in order to express 2 . These may be placed together as

illustrated. From consideration of the diagram below we see that
1

there are between 7 and 8 one-thirds contained in 2 2. The problem

is, of course, to determine accurately the correct number. So we
1 2

must find on what part of the distance between 2 3 and 2 3 the arrow

falls:

ONE ihitiOL.E ONE WHOLE ONE W##OLE
0
a.

I
A.. . / 41,

ir 2 42.t 71
3 '

o
3 ÷ / /731-

A/7 02 1 3

2-k- s 2 1- 32_11,
42

789-974 0-65-7
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Most students will estimate halfway and assume, therefore,

7 1 2 1
are one thirds in 1" ( 2 1 1 7 1

1 3

1

that there

Manipulation of learning aids does much to build the necessary
understandings in developing the algorisms for computation. Other
fractional representations such An fra^tion boards, fraction -"^-,
fraction squares can be employed in helping students to acquire
understandings.

alb Olt .1
011111.11
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PART VI. INFORMAL GEOMETRY AND MEASUREMENT

HISTORY

No one today would dare attempt to build a house, lay out a
sidewalk, or build a road or bridge without using the basic ideas
of geometry and measurement developed by the Egyptians many centuries
ago.

Perhaps man's first use of the notion of quantity was to depict
the size of something - -most likely his possessions. As civilization
progressed and man became more the master of his environment he
began to build shelters and to take into cognizance more of the natural
phenomena surrounding him. It required some notion of geometry and
measurement to think about the apparent motions of the sun, moon,
stars, clouds, and streams. As time passed, he began to identify
himself with a certain area of land which he guarded carefully that he
might ward off intruders. The art of building larger and larger
structures grew as he extended his thinking to include more
complicated notions of geometry and measurement. In the ruins of ancient

cities in Egypt and other areas of the Middle East, we find the
remains of many temples, pyramids, and impressive buildings which
attest the ability of the early Egyptians, Babylonians, and later the
Greeks.

After Alexander the Great's conquests, about 300 B.C., the famous
Greek, Euclid, collected and organized old knowledge and created new
knowledge of geometry. The axioms, postulates, and theorems
systematized by Euclid stand today as one of the most coherent collections
of carefully reasoned thought ever written.

A host of well-known early scholars, philosophers, and mathemati-
cians delved into geometry with as much enthusiasm as did Euclid.
Some of the more prominent were Appolonius, Archimedes, and Plato.
Then came the Roman conquest, which ended the surge of creativity
in mathematics fostered by the Greeks.

The next era of creative work in geometry occurred in the sixteenth
and seventeenth centuries at the hands of famous scientists,
philosophers, and mathematicians, such as Descartes ar" Newton. It

was through their efforts that geometry grew into the important branch

of mathematics that treats the shape and size of things.

THE LANGUAGE OF GEOMETRY

As we have discovered, the language of mathematics is very

precise. This is partiCularly true in geometry. During.the primary
grades especially, great care should be exercised that children do

not acquire incorrect notions of geometric terms. Too often a child

thinks of a triangular area as a "triangle."
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When fractional representations and geometric shapes are used on
the chalkboard or flannelboard, attention should be given to correct
terminology. In considering geometry and measurement for the
elementary school it is difficult to separate the two concepts clearly.
Therefore we shall consider them simultaneously.

Probably one of the earliest notions a youngster has of geometry
is the recognition of variety in the shapes of objects. He is also
able to compare sizes. The "greater than" and "less than" ideas
become a part of the real world of a very young child. Then he progresses
to a stage in the kindergarten and primary grades when he recognizes
the names of shapes, such as round, flat, square, triangular, circular,
cylindrical,spherical, etc. It is well for any elementary teacher
to have sets of geometric shapesfor use in learning to identify objects
by their area, volume, and contour. Sets of such materials are
readily available from many sources. They are very good for making
bulletin board displays, using as templates for student tracing, and
as a source of material for recreational purposes like matching sets
of triangles and sets of the same shapes.

Students do not go far with investigations of this nature before
it becomes necessary to use more definite terms of comparison and a
more complete descriptive language. Let us consider some of the
essential terms.

First we need a word to describe a particular position in space.
Youngsters have this notion very early in their lives. They will need
a little help in kindergarten and first grade in learning to identify

the specific location ideas with the word "point". Points really have

no size and cannot be measured. To say that they can even be seen is

incorrect. However, in mathematical practice, it is true that a visible

point is used to represent san invisible location. In geometry we

have somewhat the same situation which we had with the number-numeral
terms. Remember, we said that a number does not exist except as an

idea. We create a symbol or numeral which represents a number. In
geometry such things as points, lines, planes, and space are things
or ideas we employ to aid in our thinking. On paper or in some other

way we can create symbols or models which represent or stand for

points, lines, planes, and space. Therefore, (.) is the symbol for a

point. .A would be read as "point A".

Sets of points may be thought of as filling up a space. Think

of the space shown below with a few of the points drawn in.



Remember that these are only a portion of the points wnich are in this
space. For example, between A and C there are many, many points. We
will represent the points by doing the following:

C

We have located a path between point A and point C. This is a straight

path. It starts at point A and ends at point C. There would also be

other paths one could follow in going from point A to point C such as

the dotted path shown below:

/6/61

A %).

STRAIGHT PATH

We had better name these paths so we can keep them separated in our

thinking. The straight path is called a line segment and the path

which is not straight, a curve. Line segments are symbolized by

naming the beginning point and the end point, then drawing a bar

over the capital letters which name these locations -- such as 0.

Remamber, a line segment has a very definite beginning and ending. It

is a "segment of a linen; therefore the word line itself takes on an

important significance. Consider the following picture or model.

A

AB is a part of a longer line going across the page. The picture

is an extension in both directions of "line segment AB" or "Kri and

will be called a line. Another way to draw this line would be as

follows:

A B

95
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The arrow points at the end mean that the line goes on indefinitely
in both directions. The symbol for the line would be Wor

Any one point on a line will of course separate the line into
two parts. Remember that the line goes on indefinitely in both
directions and consider the following:

A

The correct way to think of this would be that point A has divided
the set of points of which the line is composed into two subsets:
(1) Those to the left of point A, and (2) those to the right of
point A. A particular name for these two subsets of paints would be
helpful. The name which has been decided upon is a half line. The
set of points which make up one of the half lines and the point A
would be called arm. We have created two rays. Rays are named by
naming another point in each subset of points.

C A B

The points from which both rays extend is point A. We have one Tray
going from A to B and the other rra going from A to C. The symbols
for the rays are written and read as follows: (1) The ray which
goes from A to B will be labeled nand read__,s "ray AB". (2) The
ray which goes from A to C will be labeled Wand read as "ray AC."

Remember that a line extends in both directions without ending,
a ray extends in only one direction without ending, and a line
segment has two end points.

This characteristic of a line segment permits two different
segments to be compared. Such a comparison of the lengths of two different
line segments is called measurement.

Line segments which have the same length are said to be
congruent. When two line segments are congruent this means that
one of the segments, if it could be moved to cover the other, would
match exactly. If two congruent segments represent the same set of
points, then we say they are equal.
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If we can continue our sets of points notion to include a set
of points in space randomly arranged, but layered, we create another
kind of geometric figure. For example, imagine that the following
set of conditions could exist in which two sets of points make up
two different planes.

Youngsters in the primary grades can locate all sorts of models
of planes in the classroom (i.e., tops of their desks, the chalkboard,
the floor, etc.). Three concepts which must be clarified with the
students regarding a plane are:

(1) A plane has a "flatness" characteristic.
(2) A plane is made up of a set of points and can be extended

in all directions so long as it retains the flatness

characteristic.

(3) A plane really cannot be drawn or constructed; we only construct,
draw, or give examples of a model of a plane.

Consider a sheet of paper as a model of a plane. Fold the sheet

as is shown in the following diagram:

fb fold in paper
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The two points A and B arcsn the crease. We have now formed a model
for two planes. Line AB (As) is in both planes. Line segment AI is
also in both planes. We can now formulate two important ideas about
planes and a line. They are: (1) If a line contains two different
points in a plane, it lies in the plane; and (2) two planes intersect
or come together in a line. An extension of this birn demonstrates
that many different planes could intersect in a link. A model of this
situation would look like this:

Models of planes illustrating this concept are useful in the intermediate
grades of the elementary school. They may be made from material such
as chalkboard or plastic upon which points may be located, lines may
be drawn, and so forth.

Students will have realized by this time that any two points in
space will determine a line or line segment. If a third point in space
is added (not on the line determined the first two) , then the three
points are in a plane. Another way of saying this is: Three points not
on the same line determine a plane. This condition suggests that a three-
legged stool or table always rests solidly against a floor regardless
of the fact that the floor may not be level or all the legs exactly the
same length.
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SETS AND THEIR APPLICATION TO GEOMETRY

In order to explain precisely some of the mathematical ideas of

elementary geometry it is necessary to be familiar with the notion

of sets and the symbolism used in dealing with sets.

For our purposes, we will simply say that a set is a collection

of well-defined objects. The objects which make up a set are called

elements or members of the set. Examples would be a set of books,

a set of dishes, the set of points on a line, the set of boys in the

fourth grade, the set of girls in the fourth grade, and the set of

students in the fourth grade.

Consider the last three examples for a minute and illustrate

these with diagrams:

SET OF GlRL.51,4
THE POWiTli GRADE

flfin acr
F$

SET OF BOP S /N
7-NE A-OtlItarli GRADE

tA
We can now define another set such as the set of students in the fourth

grade as follows:

THE JET OF ST1JPENTZ.5 fit, THE FOURTH GRAS

arr oP GIRLS /44'
17-le Ay,1i/erg GRADE

411t.fi
ifrA

Y94.

SET OF aoys IN
THE FOURTH GRADE

fra
13-1

rargvrr,errr-sv.rrhr*rrekr'rkArir'aV"'
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The set of girls in the fourth grade and the set of boys in the
fourth grade combined gives the set of students in the fourth grade.
In this case the set of girls in the fourth grade would be a subset of
students in the fourth grade. The set of boys would also be a
subset of the students in the fourth grade. Capital letters are
used to represent sets. The set of girls will be called set A, the
set of boys set B, and the set of stud-ntg set r. Then the set of
students in the fourth grade would be called the union of set A and
set B. There is a symbol for this notion of union. The symbol is U.
We can now write our statement as follows:

AuB = C

The statement would be read: "The union of set A and set B is equal
to set C." The union operation then directs us to find the set that
includes all the members of the sets about which we are talking.

To give another example, we could define set A as the odd numbers
from 1 to 10 inclusive. Then set A could be written in the form that
was used with the boys and girls in the previous example, or it could
also be written in another way.

or 1,3,5,7,9)

S Et- A

Define set B as the even numbers from 1 to 10 inclusive:

or

SE/.
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Now AU B or AU B = 1,2,3,4,5,6,7,3,9,10

The union of two sets is known as an operation on sets.

There is one other operation on sets with which we need to be
concerned in the elementary school.

Let us define set II to be the set of numbers from 1 to 12 inclusive
that are evenly divisible by two. Then set ME= 1'2,4,6,8,10,12) .

Define set N to be the set of numers from 1 to 12 inclusive evenly
divisible by 4; then set N 4,8,12) .

M U N = {2,4,6,8,10,4

Sets M and N have some elements in common--namely, 4, 3, and 12.
Under this condition, the name for this operation is intersection.
The symbol for intersection is fl. This symbol directs us to
find the common members or elements of the two sets M and N.
Armtter method of depicting this operation would be as follows:

M (1 N

The intersection of the two sets from the first example would be
empty. That is, the intersection of the set of boys in the fourth
grade and the set of girls in the fourth grade would not have any
members because a student is always a boy or a girl. The situation
would be depicted pictorially as follows:

The set of boys
in the fourth
grade.

A

,.v

The set of girls
in the fourtb
grade.
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An empty set (a set that has no elements) is called a null set and

is symbolized as 0 (zero with a line through it). New we can write

the intersection of set A and B as:

A B 0

Students in the intermediate grades can understand these set

concepts with no undue difficulty. They should have an opportunity

to do many problems using set language and ideas. Overhead projections

with overlays are an effective method of presenting some of the

concepts of sets. Also, the bulletin board offers another possibility

of adding interest in the classroom study by displaying set operations

diagrammatically illustrated. Types of exercises which most students

find appealing follow:

Shade A rl B

Shade (Aninc

Student would shade

Student would shade

Shade AO B Student would shade
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We find many applications for set ideas in geometry. For example,
we have already talked about sets of points on a line, half line, ray,
line segment, etc. Notice the following examples:

1. 41. and., are given intersecting lines. They intersect at point P.
Let A be the seta of points composing linea.and 8 be the set of points
making up line.&. Then the following condition would be true:An80

2. In the above diagram observe the two intersecting planes P1

and P2 . P1 and P2 would intersect in The following would

be true:

P
1
n P

2
1

Read: "P one intersect P two equals line

R2.

789-974 0-65-8
t.-;
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In the diagram above,P1 and P2 are models of parallel planes,

such as the floor and ceiling of the classroom. P1 contains line

11 and P2 contains line12 . Lines), andi2 will never intersect- -

Why? The set notation of this canditinn is:

3. Consider the following model of a line with points A,B,C, and D
identified.

A .1
The points A,B,C, and D create the possibility of naming segments in
line X . The following are true:

AB 11 BC = AC

AB I BC =

By this time it should be evident that set notions are very valuable
tools to use in explaining geometric situations. Teachers will be able
to employ many devices and models in the classroom to teach youngsters
those ideas. For example, a model of a rectangular solid presents
many opportunities to discover geometric concepts by naming lines,
points, and planes and talking about the unions and intersections of
the sets of points contained in each.

OTHER GEOMETRIC CONDITIONS

A few more concepts of elementary geometry are necessary before
we can accurately describe the conditions which one encounters in
measurement.

Examine the following model of a plane:

Points A and B are two specified points in the plane.

....-- , 4.7t444-:>%4vrt-'5173.44



Choose any path from A to B, then choose a different path back

to A. We have geniiated what is called a closed curve.

If a student walks to school by one route and returns to his
home by another he has walked a path which could be described as a
closed curve.

Remember, when we use the most direct or "straight" path between
two points this is a line segment, but when any other path is used

it is called a curve.

We cannot obtain a closed curve by using two line segments.

With three line segments it is possible to obtain a close: curve.

The union of three line segments is called a triangle. The union of

four line segments is called a quadrilateral. Examples are:

kr-This is not a quadrilateral.

The end points of the segments of the figures above are called vertices.

For example, the quadrilateral shown below has four vertices, one

each at A,B,C, and D.

8

` .34
,, AIL

105



106

Next, consider a polygon that has many, many sides. One of the best

ways to create this kind of polygon is to use a triangle shaped

like

Think of the triangle being used over and over again as is depicted

below:

If we were to select triangles with successively smaller bases,

we could conclude that we would finally produce a polygon with so

many sides that it would be impossible to count them. Finally, we would

arrive at a time when we would have nothing but a set of points

all of which are at a given distance from another point. This point

is where sthis vertex of the triangle was placed in

completing the figure below.

The name for this set of points is the circle.

JET OF Poiwr.s

The set of points making up the radius and the center point are not a

pan of the circle. Only the set of points at the given distance

CA from the center is a part of this model of a circle.
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ANGLES CONGRUENCY

A

The familiar geometric representation shown below is called an

angle:

The next thing necessary is to have a symbol with some method of naming

the angle. Let's add three points A, B, and C.

The symbol will bet. and we will use the points to name it. We write

4, BAC (read "angle BAC"). It could also be labeled as 4 CAB. (Note

the position which the letter A occupies in both cases.)

A definition of the angle would be the union of two intersecting

rays. The point where they intersect would be called the "vertex" of

the angle.

According to our definition of an angle we must think of the sides

(line segments) of a triangle extended in order to have rays. Consider

the following diagram:

The triangle has three angles

(not a part of the triangle

but just angles of the triangle ).

They are 4_ CAB, L. ABC, and

BCA.

107
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In our previous discussion of line segments, it was assumed
that if two segments have the same exact measure (letgth) they are
called congruent. The exactness of these measures or lengths may
be determined, as we described earlier, by designing models of
segments and placing them so that one coincides exactly with the
other. This was our method of determining congruency. The method
would also be the same for angles, triangles, quadrilaterals, etc.

The symbol for congruency is

Are the above two models of triangles congruent? How could we prove
or disprove our supposition? If they are congruent W4 may write
the following symbolic sentence al ABC IrAd DEF. This would be
read: "Triangle ABC is congruent to triangle DEF."

Students will have probably concluded by this time that
geometric figures ere congruent if every part of one exactly
corresponds to that same part of the second. To this point we have
been able to show this by superimposing one on the other to observe
the degree of "sameness" or matching.

There are better, or at least other, ways of making such
comparisons. One is called measurement.

MEASUREMENT

Measure compares the thing to be measured with a standardized
and arbitrary unit. We will be concerned here with measurement in
one dimension (linear), in two dimensions (angular and area), and
three amensions (volume).

The first problem in measurement is to establish a unit which
can then be applied to the unknown quantity and which will provide
an answer to the question "how much."

For linear measure the compass and a ray are necessary to create
the measuring device most commonly used.
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Let's assume we start with the ray shown as follows:

0

Next we have a compass opened to a particular setting. Beginning

at the point 0, we mark off equal segments on the ray with the

compass as shown.

O

ik
f'

1.0
ri

1.

n .
0, % r.......0

__1,..,.

et a 1 tit ' 4. %it %% a
VI- 1

Next we lable these points, starting with O.

0 / 2. 3 44 41- 6
t.
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We are now ready to use our measuring device to determine an answer

to how many units (or parts of units) of the size marked off on

the ray is the measure of any unknown segment. This would be

determined by bringing the segment alongside the labeled ray and answering

the question.

O

A

2 3 .5 6

AB is 4 units long.

B

Of course, if we open the compass to mark off the ray in segments

the length of 1 inch we have a device that will read linear measure in

inches of parts thereof. If the compass were opened to mark off

segments of 12 inches we have an instrument which will measure feet or

parts thereof, and for yards, rods, etc., the same would be true.

It is desirable that every youngster in the primary grades should

be acquainted with, and have available, a ruler to use in making

linear measurements. A compass should also be available for use in

the primary grades. (If care is exercised in using the common compass

accidents from the points can be avoided.)

*.t
war, t4,61. , a =1-
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As a variety of segments or objects are measured it will become
obvious to all that measurement with a ruler is approximate. For
example:

How long is the object? The object is clearly 5 inches long with some
left over. Now let's look closely at that part left over.

Is the object nearer 51/2 or 5 inches? Of course it is nearer 51/2.
Since we are using a ruler whose smallest segment is % inch, we are
to report the length of the object to the nearest inch and will
say it is approximately inches long.

Let's assume that we have a ruler marked off in inch segments
and look again at the object through the magnifying glass.

1 2 1
Now, is the object nearer 5 4 inches or 5 4 inches (5 3. inches)? The

1

answer is 4 .



This procedure should be repeated, using rulers marked off in
1 1

segments of 3 inches and 16 inches. Remember, each time the length
should be reported to the nearest one of the smallest units into
which the ruler is marked. If the ruler is marked off in half-inches,
then the approximate measure can be reported to the nearest half-

inch, quarter-inch, and so on.

From a series of laboratory exercises such as this the student
will be led to generalize that the smaller the unit of measurement
marked off on his ruler the more precise is the measurement and also
that the greatest possible error (assuming the ruler is read
correctly) is one-half the unit of measurement.

ANGLE MEASURE

Assume that we have the following model of an angle:

Row could we measure the size of the angle above? The logical

answer is by measuring in some manner the opening between the two

rays. Then we must design an instrument which will give us a
measurement of this opening formed by the two rays, which we call the

angle. Remember, as in linear measure, we must first find some unit

measure to apply to the unknown and then find the approximate number

of these unit measures which is contained in the unknown.

Consider the following collection of unit angles:

lit
rs

/6

/7

18
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Next take the compass and using 0 as a center draw a model of a circle.

If we cut this circle out we could have a half-circle marked in unit
measures. The model of the given angle could also be cut out and placed
on the measuring device as follows:

/1 0 P
7

4r Other ray
* falls very

3 near 2.

2

Vertex of
angle at 0

Place one ray of angle so
that it exactly coincides
with the ray marked 0.
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We would report the measure of the unknown angle as approximately

2 units. If each of the 18 basic unit measures in the instrument we
have just made is subdivided into ten equal units, we would have 180
instead of 18 units in the half circle. This, of course, is the

common protractor which is marked off in 180 unit measures. Each

measure is known as a degree and is written as a small circle to the

right and above the numeral, as 20". This would be read "twenty

degrees."

The protractor looks like this and is divided into units known

as degrees.
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In order to develop basic understandings students may construct

simple protractors by dividing a circle into halves, then quarters, etc.

Compare a given angle in a manner which indicates whether it is "more

than a quarter cirle," "about an eighth of a circle," and so forth.

The instrument is used as illustrated below:

al A

0

6
C
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(1) Take a given model of an angle which is to be measured.
(2) Place the point on the straight edge of the protractor

exactly over the vertex of the model angle.
(3) Be sure that one ray of the angle exactly matches the 0 of the

scale on the protractor.
(4) To find the measure of the angle read the number of degrees on

the scale exactly opposite the other ray (side) of the angle.
(In this case, approximately 230.) Again, the measure of the
angle can only be reported to the nearest unit of measurement

. into which the protractor is subdivided.

Most protractors have two sets of numerals on the scale depicting
degrees. This is added for convenience so that the approximate measure
of the model angles can be read from either scale of the instrument.
Both numerical scales have one point in common. Find that point on
the following drawing.
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As we see in the diagram,it is 90° (ninety degrees). This point
measures angles of a very special size. Angles of 90° measure are

called right angles. "Square "corners on buildings, books, paper, etc.,

all have a measure of 90'. A triangle which has an angle whose

measure is 90° is known as a right triangle. What is the sum of the
measures of three angles of any triangle? We can measure them with

a protractor and find out.
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Students in the elementary grades should have many laboratory
experiences dealing with the measurement of angles with the protractor.
The instrument is very inexpensive and can be acquired from many

sources. Ambitious students may find it possible to construct their

own protractor. Demonstration protractors for use on the chalkboard

are also available and field protractors to use out of doors are

useful in helping students to understand the measure of angles. The

ultimate in a field protractor is a surveyor's transit, but a less

complicated device for use in he elementary school is probably more

practical.

Teacher demonstrations of techniques for manipulating learning

aids in the area of geometry are often unsuccessful because the devices are

too small to be visible by students seated in the classroom. Various

overhead projectors are valuable in overcoming this difficulty.

Other aids such as place value charts, perimeter-area boards, and

grids may be reproduced on a transparency and used by the teacher for

demonstrations. Students can then be supplied with the devices for

use at their seats. The overhead projector can be used by the teacher

to direct the manipulation of the learning aid by the students.

Ordinary 31-inch squared paper will serve as a grid for student use

in developing perimeter and area concepts, and making arrays and number

lines. Transparent geometric models and shapes, fractional rulers and

other fractional representations, protractors, etc., are valuable for

use with the overhead projector. It should be remembered that the
use of the projector should result not in a viewing activity only on

the part of the students, but in one in which they participate.

PERIMETERS

We may now recall our definition of a simple closed curve as

being the path generated by going from a point such as A to another
point B and returning by a different route. A triangle is an
example of a model of a simple closed curve. The measure of a

triangle or any simple closed curve would be the union of the line

segments composing the curve. Another, perhaps more simple, way of

saying this is: The measure of a simple closed curve may be found

by adding the measures of each individual line segment. When we

find the measure of a simple closed polygon we call this measure the

perimeter. This measure of a circle is called the circumference.

Before students are given formulas for finding the measures of

perimeters and circumferences, they should have the opportunity to

have many laboratory experiences dealing with these concepts. Many

students will be able to discover formulas themselves, others will

need assistance, but all should have the opportunity to try some

of the experiments.
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In working with the concept of the measure of perimeter many
teachers have found a perimeter type corkboard to be very helpful.
The perimeter board is a device which permits the drawing of a
closed curve and which also is made of cork or a similar substance
to receive pins at the vertices of the curve. The following diagram
illustrates this:

After the tape measure is stretched around the pins it may be removed
and the measure of the triangle approximated by reading the tape.
It will also be discovered that the same quantity may be obtained
by finding the linear measure of each of the three sides of the
triangle and then adding these quantities. Consideration should
be given to the degree of the precisioa of the measure as presented
in the foregoing section or measurement. Polygons of any type
may be experimented with in this manner.

Another interesting experiment is to create a closed curve which
is as nearly circular as possible and use many pins to approximate
a "many, many"-sided closed curve.



Stretch the tape measure around these pins, remove it, and read

an approximate measure of the circumference of the circle. Next

take the linear measure of the diameter (2 times the measure of the

radius) of the circle and divide the measure of the circumference

by the measure of the diameter. Repeat this for different-sized model

circles. What is discoverable about all the quotients so obtained?

A similar experiment could be conducted by creating the models of

circles out of wire and then straightening out the wire to make the

measures. Teachers find a perimeter board a most valuable device in

studying the measure of perimeter of many types of closed curves.

We have developed the ideas of finding the length of a segment

by comparing it with a unit segment, and of finding the measure of

an angle by comparing it with a unit angle. Now we will turn our

attention to the matter of finding a unit measure for the internal

region of a closed curve.

Consider the set of closed curves shown beloW. The problem with

which we are concerned is to develop a unit measure which will, when

applied to the shaded regions inside the closed curves, provide an

answer to the question, "How much flat surface is contained inside

this simple closed curve?" We will call the measure of this flat

surface area.

We would like to have whatever unit measure of area we create be

easy to apply to as many of the closed curves drawn above as possible.

Consider a unit measure as a circle with radius 1 linear unit and also

a unit measure as a square whose measure is 1 linear unit on each side.

1UNST-

IUNIT
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The question remains--which of the two unit area measures would be the
easier to apply?

Consider the following situation: Suppose we have a closed curve
such as that which is pictured and we will try to apply both unit
area measures which we have designed.

wiir

I

WM/

The unit square has been
applied here.

The unit circle has been
applied here.

UNor

When the unit circle is used as a measure, note the area (blackened)
which we still have not measured and also the fractional parts of unit
circles (crosshatched) which we must consider.

In using the unit square we have no area which has not been
measured and we have only three fractional parts of unit squares
(cross-hatched) which we must consider.

Now answer the question: In which part of the situation could the
area be more accurately reported? There seems little doubt that the
case in which the unit square was used furnishes the best report of
the measure of the area contained inside the closed curve.

,...- A.-
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This kind of experiment should be tried by students using many
different kinds of closed curves. It not only gives logic to area
determination but in addition it provides opportunities for valuable
discoveries relative to the basic meaning of area.

Since the decision has been made to use the unit square as the
basic unit of area measure, we of course would report the area of a
region within a simple closed curve as being so many square units.
If the measure of the line segments of the unit square were 1 inch,
the unit area would be "1 square inch4 if it were 1 centimeter,
the unit area would be " 1 square centimeter": if it were 1 foot,
the unit area would be "1 square foot's; and so forth.

Assume that a model of a rectangle has a measure of 4 inches in
length and 3 inches in width, what would be the measure of its
area? How would this measure of area be reported?

96

a"

Of course, the logical unit of measure would be one square inch. we
find by counting that the measure of the total area is 12 unit
squares which, in this case, is 12 square inches.

Next, look at a model triangle snch as that represented below.

789-974 0-65-9
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The area of this triangle would be 10 square units plus some other
fractional parts of square units. We could estimate these fractional
parts as being about 5 halves of unit areas or an additional 2k square
units. Then the total area of the triangle would be measured as
10 -L 21/2, approximately, l23 square units.

To carry this experiment one step further--use the compass
to measure the gegmentg sides of the triangle represented above
and construct a quadrilateral with segments of the same measure.
Of course this turns out to be a special kind of quadrilateral.
What kind?

Now apply the square unit of measure to the area within the quadri-

lateral. The measure of the total area of the quadrilateral is
25 square units. Now is this related to the area of the triangle

used in constructing the quadrilateral? (Most students at grade'

levels 5 or .6 will be able to discover the relationship of the
measure of the area of a triangle co that of the quadrilateral

constructed from the triangle.)

Exercises of this type should be used with students until
they are able to discover the fact that the measure of area can
be determined by finding the linear measure of th:2 segments
compostng the sides of the geometric '"figure and then treating

this in a special way. For the square, this would simply be finding

the linear measure of a segment forming the sides of the square,
then squaring this number; for a rectangle, finding the product

of the numbers obtained by measuring the lengths of two adjacent sides

of the rectangle; for a triangle, finding k the product of the lengths

of the adjacent sides of the superimposed rectangle.
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(1) Locate a pin at A.

(2) Place another pin at B.

(3) Place a third pin at C.

(4) Stretch a rubber band or elastic thread around A, B, and C.

(5) Approximate the area by counting the number of squares

of unit area in the region inside the rubber band.

(6) Next, locate another pin at D.

(7) Stretch another rubber band around ABCD,

(8) How is this area related to the area of the trgAngle?

The same procedure can be followed with models of parallelograms,

trapezoids, circles, etc.

0,

The following are examples of these experiments as they would

appear if the perimeter area board were used to develop the concept

of area.

IBMS
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There are many applications of the area concept in everyday

life. However, rather than relying on "floor covering" and "painting,"

we find classroom experimentation with geometric models, and student

activities such as a survey of the school yard, with related problem

situations, more satisfactory.

VOLUME

Up to this point we have covered measurement in one dimension

(linear) and measurement in two dimensions (angles and area), and we

need to look briefly at measurement in three dimensions (volume).



The first essential is to develop a measure of unit volume,

since the concept of volume. involves stating the smount of space

contained within (the interior of) a box, a cone, a sphere, a

pyramid, and so on.

A unit measure for volume will be a cube whose linear measures are

1 unit long, 1 unit wide, and 1 unit high.

A This will be referred to as the mg...suro,

1 cubic unit. If the linear measure of

a solid is in inches, then the cubic

measure can be expressed in cubic inches.

Now that we have a unit of measure for volume and the concept

of what we mean by the word volume, we will proceed to apply this

knowledge to determine the volume of a rectangular solid (box).

We will need to use a solid with dimensions in even inches so that

the unit measure (cubic inch) will fit.' These are often difficult

to secure but can be constructed. Consider a box whose dimensions

are 4 inches long, 4 inches wide, and 2 inches high. We note that 16

of the cubic-inch blocks are required to cover the bottom of the box.

"I
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Since the box is 2 inches high, the first layer comes up to 1
inch. A.second layer can be placed in the box on top of the first
layer. Then the box contains 2 times 16 blocks or 32 cubic inches.
The measure of the solid 4 inches by 2 inches by 4 inches is 32
cubic inches.

Experiments such as this are hel cful to students in linflAvstanA4ng
the concept of volume. Students should be encouraged toctscover the
method of computing volume of various solids and then to develop
formulas to guide their computation, rather than to memorize formulas
and then to apply them without a real understanding.

A set of models of three-dimensional solids for individual student
experimentation is essential to teaching the concept of volume. Such
solids should be constructed so that measures of the unit volume can be
stacked inside for the purpose of approximating the measure of the
volume. They should also be made in such a way that they will hold
liquids for the determination of volume.

For example, consider a cylinder and cone having equal height
and area. Fill the cone with liquid and empty it into the cylinder.

Students should experiment to find the number of cones required
to fill the cylinder, then to develop a formula for the determination
of the volume.

In order to approximate the measure of the volume of a solid
such as a cylinder, other units must be used rather than small
blocks. Since the inside surface of the cylinder is curved, the
rectangular solid blocks will not fit exactly. This experiment
has to be conducted with something that will take the shape of the
inside of the cylinder. A liquid such as water will do this. We
should conduct the experiment by filling one cubic unit measure with
water and emptying it into the cylinder, counting the number of
cubic unit measures required to fill the cylinder. Students should
then determine the relationship of the measure of the volume of a
cylinder to the measure of the circular area contained in the base
of the cylinder.



way:

The volume for a sphere may be approximated in the following

Take the sphere apart and fill each half with liquid as in the

case of the cylinder. Discover the relationship between the measure

of the volume of a sphere and the measure of the area of the largest

circle which could be drawn on the sphere.

Another kind of experimentation which is quite appropriate for

this level is drawing the surface of a solid on a plain sheet of

paper in such a way that the paper can be cut, folded, and pasted

together to form a three-dimensional model. Many patterns for this

type of construction are available. A few examples follow, which may

be traced and constructed. Making patterns for construction can be

an excellent beginning experience with drawing instruments. Capable

students should be encouraged to design their own patterns.

125
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The kind of experimentation provided by cutting out patterns and

pasting them together is not worth the time and effort involved

unless special attention is given to the development of the mathematical

ideas which are a part of this exercise.

Appropriate questions to ask along with such experimentation are:

(1) How many faces has this model?

(2) Why must the linear dimensions of certain faces be made to

match?

(3) What.is the measure of the area of various parts?

(4) What Is the measure of the total surface area of the model?

(5) What is the relationship between the measure of the volume

and the measure of the surface area of various faces?

(6) If the model were sliced with a sharp knife in various ways,

what would the cross section look like?
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